
Lark: Low-Rank updates after knowledge localization for Few-shot
Class-Incremental Learning

Supplementary Material

6. More Details for Lark
Additional details of this work are provided in the supple-
mentary materials. Specifically, Section 6 presents detailed
information on the Lark method, while Section 7 demon-
strates the effectiveness of the proposed method through ex-
tensive experiments.

6.1. Implementation of Nearest Neighbor Classifier
In this work, we employ ViT-B/16 as the backbone and
utilize the Nearest Neighbor Classifier in accordance with
CLOSER [37] and OrCo [1].

6.1.1. Classifier of CLOSER
In this work, the implementation of the classifier head pri-
marily reflects the its subsequent Classifier Replacement
(CR) strategy. Specifically, the CR designs the following
two stages:
Initial Training Stage During the training on base classes,
the entire network consists of a feature extractor fω(·) and
a classification layer. The weights of the classification layer
are denoted as ω. The training objective is a softmax cross-
entropy (SCE) loss, where the logits are computed using
cosine similarity scaled by 1/ε . The loss function is formu-
lated as:

Lce = → 1

B

B∑

i=1

log

(
exp

(
1
ε cos(zi,ωyi)

)
∑

j exp
(
1
ε cos(zi,ωj)

)
)
, (11)

where zi = fω(xi) represents the feature extracted from in-
put xi, and ε is a temperature parameter controlling the logit
distribution. The classifier (i.e., the classification layer) is
designed only to distinguish between classes.
Classifier Replacement Strategy (CR) After the initial
training phase on base classes is finished, we freeze the
feature extractor (i.e., fω) and adopt a classifier replace-
ment strategy. Specifically, the original classification layer
weights ω are replaced with class prototypes. Each class
prototype ω

→
j is given by:

ω
→
j =

1

Nj

Nj∑

n=1

fω

(
x
(n)
j

)
, (12)

where Nj is the number of samples in class j. For new input
samples, classification scores are then obtained by comput-
ing the cosine similarity between their features and the class
prototypes.

6.1.2. Classifier of OrCo
OrCo achieve linear classification by generating a set of mu-
tually orthogonal pseudo-targets on the hypersphere. First,
randomly generate a set of vectors T = {ti}|T |

i=1, where the
number of vectors satisfies |T | ↑ C, and C is the number
of classes. Then, to ensure these pseudo-targets mutually
orthogonal, we adopt a special loss function LTG(T):

LTG(T) =
1

|T |

|T |∑

i=1

log

|T |∑

j=1

e
ti·tj/ε0 , (13)

where ε0 is a temperature parameter (set to 0.8 in this work).
The loss function aims to maximize the angles between the
pseudo-targets, ensuring they are uniformly distributed on
the hypersphere and mutually orthogonal. Finally, we ob-
tain a set of mutually orthogonal pseudo-targets by optimiz-
ing the loss function LTG(T) for 1000 iterations. Once gen-
erated, these pseudo-targets are fixed and remain unchanged
during the entire training process.

Using the pseudo-targets, the nearest neighbor classifica-
tion head leverages their orthogonality and similarity com-
putations with sample features. The implementation details
are as follows:
Sample Feature Extraction. Given a sample x, we ex-
tract its feature representation using the backbone network.
Specifically, we use the class token z

(L)
m from the last layer.

Matching with Pseudo-Targets. Calculate the similarity
between the sample feature and each pseudo-target via the
inner product.
Classification Rule. Classify the sample x into the class
corresponding to the pseudo-target with the highest similar-
ity to its feature z

(L)
m :

class(x) = argmax
j

z
(L)
m · tj . (14)

6.2. Perturbations Added to Hidden States
We collect all the hidden states H = {h(l)

a , h
(l)
m }Ll=1 of the

original sample x from the backbone network. Next, we se-
quentially applied noise to the hidden states at each layer
and measured the impact of that layer on the model’s output
by computing the gradient of the target function with re-
spect to it. Specifically, taking the output h(l)

a of the MHSA
module at layer l as an example, we uniformly added a per-
turbation ϑ to each token:

h̃
(l)
a = h

(l)
a + ϑ = [z(l)a + ϑ; p(l)a,1 + ϑ; p(l)a,2 + ϑ; ...; p(l)a,N + ϑ],

(15)

Figure 8. Parameter investigation experiments on the number of editable layers, measured by average accuracy (Avg). The number marked
on each bar represents the average value obtained from three experiments.

(a) Avg in CIFAR100 (b) Avg in mini-ImageNet (c) Avg in CUB200

(a) PD in CIFAR100 (b) PD in mini-ImageNet (c) PD in CUB200

Figure 9. Parameter investigation experiments on the number of editable layers, measured by performance drop rate (PD). The number
marked on each bar represents the average value obtained from three experiments.

where ϑ ↓ N (0,ϖ2). The perturbed hidden states are col-
lected as H̃ = {h(1)

a , h
(1)
m , . . . , h̃

(l)
a , h̃

(l)
m , . . . , h̃

(L)
a , h̃

(L)
m }. It

is important to note that the hidden states of the preceding
layers remain in their original states, ensuring that only the
specific layer’s impact is evaluated and avoiding interfer-
ence from noise in earlier layers. Additionally, the residual
connections in the encoder allow the perturbation at the spe-
cific layer to influence the hidden states of subsequent lay-
ers through forward propagation, thereby enabling a more
accurate assessment of that layer’s influence.

6.3. Lowest-K for Parameter Selection

Figures 8 and 9 present the results obtained on different
datasets with varying values of the editable layer count (K)
set to 1, 2, 3, 4, and 5. Each value of K is tested in
three separate experiments to ensure the reliability of the
results. It is evident that, across all three datasets, a mod-
erate number of editable layers (typically K=2,3,4) yields
the best performance, avoiding both too few layers (which
limits the model’s learning capacity) and too many layers
(which increases the risk of catastrophic forgetting). No-
tably, when K=3, the best performance was consistently
achieved across all datasets.

6.4. Reason for SVD
Summing or averaging multiple Rank-One matrices typi-
cally results in a matrix that is no longer Rank-One, pos-
ing challenges for maintaining low-rank constraints. In this
section, we approximate the resultant matrix using SVD to
obtain a Rank-One matrix [3, 19]. We provide a rigorous
mathematical formulation of this method and elaborate on
its rationale and effectiveness.
Problem Definition. Given N + 1 Rank-One matrices
{!Wi}Ni=0, the total weight update matrix {!Wi}Ni=0 is ex-
pressed as:

!W =
N∑

i=0

!Wi. (16)

Although each !Wi is Rank-One, the rank of the matrix
!W may exceed one due to the subadditivity property of
matrix rank, i.e.:

rank(!W) ↔
N∑

i=0

rank(!Wi). (17)

Thus, to obtain a Rank-One approximation of !W , we
impose a rank constraint. Specifically, we apply SVD to
decompose the matrix !W ↗ Rm↑n.

Rank-One Approximation via SVD. The SVD of the
matrix !W can be expressed as:

!W = U”V T
, (18)

where,U ↗ Rm↑m is the orthogonal matrix of left singu-
lar vectors; V ↗ Rn↑n is the orthogonal matrix of right
singular vectors; ” = diag(ϱ1,ϱ2, . . . ,ϱr) is the diagonal
matrix of singular values, with ϱ1 ↑ ϱ2 ↑ · · · ↑ ϱr > 0,
and r = rank(!W).

To approximate !W as a rank-one matrix, we retain
only the largest singular value ϱmax = ϱ1 and its corre-
sponding left singular vector umax and right singular vector
vmax. The rank-one approximation is then given by:

!W ↘ ϱmaxumaxv
T
max, (19)

where ϱmax is the largest singular value of !W ; umax is
the left singular vector corresponding to ϱmax; vmax is the
right singular vector corresponding to ϱmax.

By retaining the principal singular components of !W ,
we achieve the best rank-one approximation.
Theoretical Proof. The optimality of this rank-one ap-
proximation is guaranteed by the Eckart-Young-Mirsky the-
orem [32]. This theorem states that, in terms of the Frobe-
nius norm, the best Rank-k approximation of a matrix can
be achieved by retaining the largest k singular values and
their corresponding singular vectors.

Specifically, for k=1, our goal is to minimize the follow-
ing error:

E = ≃!W → ϱmaxumaxv
T
max≃F , (20)

where ≃ ·≃F denotes the Frobenius norm. By retaining only
the largest singular value ϱmax and its corresponding sin-
gular vectors ϱmaxumaxv

T
max captures the dominant infor-

mation in !W , thereby achieving the optimal rank-one ap-
proximation in theory.

This method captures the dominant information in !W

while significantly reducing computational complexity and
ensuring the low-rank constraint of the result matrix. In
practical applications, this approach exhibits good perfor-
mance and stability. Furthermore, minimizing the error un-
der the Frobenius norm guarantees that the approximation
matrix has the smallest possible deviation from the original
matrix [59].

7. More Details for Experiments
7.1. Details of Regular Training
To obtain the target vectors for editing, we perform regular
training on the model to be edited. During this process, only
the selected parameter matrices are updated, while the re-
maining parameters remain frozen. We then input the train-
ing data from the incremental session into the model and

apply the cross-entropy loss to enable the model to quickly
adapt to new knowledge. Each sample undergoes 50 itera-
tions, with an initial learning rate of 0.1, and cosine schedul-
ing is employed.

7.2. Changes in the Attention Matrix

Figure 10. Flowchart for calculating the similarity of attention ma-
trices between the models before and after training on CIFAR100
Session 1 data.

Figure 10 presents the cosine similarities of samples in
the models before and after training. This subsection details
the entire computation process. The trained model refers
to the model trained on the session 1 training data of CI-
FAR100; the untrained model has not undergone this train-
ing. We then input 25 test samples into both models, extract
the attention matrices from the MHSA module of the sixth
layer, and compute the similarities sequentially.

7.3. Comparison with SOTA and PEFT Insights
To further validate the effectiveness of our method, we con-
duct a comprehensive comparison with prompt-based meth-
ods (ASP [28], PriViLege [39]) and parameter-efficient
fine-tuning approaches such as LoRA [15] and CKPD [26].
As shown in Table 6, our method, Lark, is evaluated both
under the standard FSCIL setting (without using any pre-
trained weights) and under the same pre-trained setting as
ASP (denoted as Lark↓). This dual evaluation ensures fair
comparisons across different methodological assumptions.

Method CIFAR100 CUB200 mini-ImageNet MP (M) LP (M) FLOPs (G)Avg PD Avg PD Avg PD
ASP* 89.00 5.50 83.83 3.60 / / 89.61 7.15 49.84

PriViLege* 88.08 4.82 77.50 7.13 95.27 2.58 197.07 14.4 77.13
CKPD* 88.62 5.35 84.95 3.72 95.36 3.50 87.43 0.11 35.99
LoRA* 83.26 14.17 76.81 15.33 84.73 14.46 86.78 0.29 27.40
Lark* 88.92 4.29 85.21 3.36 95.83 2.34 86.60 0.02 22.17
CKPD / / 79.00 11.49 90.66 9.95 / / /
Lark 86.03 7.74 82.00 9.77 88.15 9.43 / / /

Table 6. Results of ASP, PriViLege, and CKPD are obtained from
their papers. Methods marked with → use pre-trained weights.
LoRA fine-tunes all layers’ q and v. Model Params (MP), Learn-
able Params (LP) and FLOPs are computed using the thop library
on CIFAR100 with one sample.

Acc. in each session (%) →Frozen Localization Rank-All Rank-One Base 1 2 3 4 5 6 7 8 Avg → PD ↑

✁ ✂ ✂ ✂ 93.78 87.26 86.26 84.28 82.24 79.86 76.53 74.72 73.79 82.08 19.99
✂ ✂ ✂ ✂ 93.78 85.62 83.17 81.07 78.28 73.59 69.33 67.16 63.97 77.33 29.81
✂ ✁ ✂ ✂ 93.78 86.85 84.61 82.31 80.01 79.35 76.92 74.37 71.46 81.07 22.32
✂ ✁ ✁ ✂ 93.78 88.64 88.10 85.07 83.49 81.77 81.73 79.64 77.19 84.38 16.59
✂ ✁ ✂ ✁ 93.78 90.45 88.89 87.31 85.55 84.24 84.19 82.54 80.28 86.36 13.50

Table 7. Ablation study of different modules on CIFAR100 in this work. The best results are bolded. Avg is the average accuracy across
all sessions, and PD is the performance drop rate.

Acc. in each session (%) →Frozen Localization Rank-All Rank-One Base 1 2 3 4 5 6 7 8 Avg → PD ↑

✁ ✂ ✂ ✂ 93.58 86.26 83.17 81.51 78.53 77.59 76.11 75.56 75.03 80.82 18.55
✂ ✂ ✂ ✂ 93.58 85.18 81.98 79.18 76.38 73.59 76.79 73.99 70.19 78.98 23.39
✂ ✁ ✂ ✂ 93.58 85.83 82.05 78.47 76.95 75.27 74.38 74.05 72.21 79.20 21.37
✂ ✁ ✁ ✂ 93.58 89.04 86.46 86.37 85.24 81.78 80.96 80.23 77.63 84.59 15.95
✂ ✁ ✂ ✁ 93.58 90.12 88.46 87.19 86.94 84.55 83.54 81.85 79.12 86.15 14.46

Table 8. Ablation study of different modules on mini-ImageNet in this work. The best results are bolded. Avg is the average accuracy
across all sessions, and PD is the performance drop rate.

Lark↓ achieves the best overall performance across all
datasets in both average accuracy (Avg) and performance
degradation (PD), with only a marginal 0.08% Avg shortfall
compared to ASP on CIFAR100. Remarkably, Lark↓ ac-
complishes this using just 0.02M trainable parameters, less
than 1% of ASP’s, and under half of its computational cost.
In the non-pretrained setting, our method consistently out-
performs CKPD, demonstrating the robustness and adapt-
ability of Lark in strict FSCIL scenarios. Furthermore, Lark
surpasses LoRA across all datasets, achieving higher Avg
and lower PD, while offering substantially improved stor-
age and computational efficiency. This advantage arises
from Lark’s selective parameter update mechanism, in con-
trast to LoRA’s indiscriminate fine-tuning approach.

From a broader perspective, our method sits at the in-
tersection of Model Editing (ME) and Parameter-Efficient
Fine-Tuning (PEFT). While PEFT approaches like LoRA
prioritize scalability and efficiency through minimal train-
able branches, ME techniques aim to inject knowledge with
precision and minimal disruption. Both rely on low-rank
updates to constrain parameter changes. Our method syn-
ergizes the strengths of both paradigms by identifying key
parameters and updating them via a rank-1 matrix, achiev-
ing efficient yet targeted model adaptation.

7.4. More Detailed ablation Experiments
Tables 7, 8 and 9 present the results of the ablation experi-
ments of Lark in OrCo-ViT on CIFAR100, mini-ImageNet
and CUB200. The experimental results indicate that, under
the condition of limiting the magnitude of parameter ma-
trix updates, OrCo-ViT demonstrates a significant advan-
tage. Moreover, updating only the selected parameters is
clearly superior to updating all parameters globally. After
incorporating the Rank-One constraint into our method, a

notable improvement was observed in both datasets, sur-
passing OrCo-ViT.

7.5. Setup for Hand Keypoint Detection
Due to the lack of accurately labeled data [6], hand key-
point detection often involves pre-training on the synthetic
dataset RHD [24], followed by transfer learning on the tar-
get domain data. We consider the challenges of this task to
be describable as a few-shot incremental learning scenario.
Therefore, we selected three datasets: RHD [62], H3D [58],
and FHD [63]. RHD is a synthetic dataset, while H3D and
FHD are datasets from real-world scenarios.

We designate RHD as the Base Session, where all data
are utilized. It contains 41,000 training samples and 2,000
test samples. The H3D dataset is set as Session 1, from
which we select approximately the top 1% of training sam-
ples (200 samples) as training data, with 3,200 test sam-
ples. The FHD dataset is set as Session 2, selecting approx-
imately the top 1% of training samples (1,000 samples) as
training data, with 32,000 test samples.

This setup not only simulates the difficulty of obtaining
large amounts of labeled data in practical applications but
also allows us to investigate how to effectively perform do-
main adaptation and generalization of models under few-
shot conditions.

7.6. More Results on Hand Keypoint Detection
Figures 11 and 12 present additional visualization results.

Acc. in each session (%) →Frozen Localization Rank-All Rank-One Base 1 2 3 4 5 6 7 8 9 10 Avg → PD ↑

✁ ✂ ✂ ✂ 87.22 83.49 82.90 81.93 80.16 78.34 76.41 76.25 73.03 72.17 72.43 78.58 14.79
✂ ✂ ✂ ✂ 87.22 82.80 80.74 78.55 77.39 76.42 74.37 73.06 72.52 69.04 67.28 76.31 19.94
✂ ✁ ✂ ✂ 87.22 83.07 81.67 80.39 79.53 78.01 76.58 74.75 72.08 71.65 69.18 77.65 18.04
✂ ✁ ✁ ✂ 87.22 83.19 82.53 81.49 80.57 79.33 78.40 75.94 75.26 74.93 73.42 79.30 13.80
✂ ✁ ✂ ✁ 87.22 84.48 83.46 82.77 81.54 80.69 79.43 77.61 75.62 75.45 74.78 80.28 12.44

Table 9. Ablation study of different modules on CUB200 in this work. The best results are bolded. Avg is the average accuracy across all
sessions, and PD is the performance drop rate.

Figure 11. Detection performance of samples across different sessions. All samples are from the RHD dataset. Samples are trained and
learned in the Base session but are no longer trained in Session 2 and Session 3. The performance variation of each sample in the same
row under different methods reflects the ability of different methods to overcome catastrophic forgetting.

Figure 12. Detection performance of samples under different methods. Three samples from each dataset are selected for demonstration.
The differences in each sample within the same column reflect the ability of different methods to learn new knowledge.

