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6. Theoretical Analysis
In this section, we delineate BuCSFR from the perspec-
tive of the Expectation Maximization (EM) algorithm. The
pseudocode of our method is given in Algorithm 1.

6.1. E-step in BuCSFR
For simplicity, the theoretical analysis is conducted on sam-
ples in the c-th coarse class, Xc = {xi}Nc

i=1. As described in
Eq. (1), our goal is to determine the optimal network param-
eter θ∗ that maximizes the log-likelihood function of sam-
ples Xc, expressed as

θ∗ = argmax
θ

Nc∑
i=1

log p(xi; θ). (15)

As mentioned in the paper, the absence of fine-grained la-
bels poses a challenge to the top-down learning paradigm
outlined in Eq. (15). To address this issue, we posit the
existence of a set of latent prototypes for clusters within
the c-th coarse class, Oc = {ok}Mc

k=1, which represent the
nodes at the same level of constructed dendrogram and can
be regarded as the underlying fine-grained classes. Conse-
quently, Eq. (15) can be reformulated as

θ∗ = argmax
θ

Nc∑
i=1

log p(xi; θ),

= argmax
θ

Nc∑
i=1

log
∑

ok∈Oc

p(xi, ok; θ).

(16)

However, directly optimizing Eq. (16) is challenging be-
cause there are two parameters, o and θ, to optimize.
Thus, we introduce a surrogate function Q(·) to derive its
lower bound:

Nc∑
i=1

log
∑

ok∈Oc

p(xi, ok; θ),

=

Nc∑
i=1

log
∑

ok∈Oc

Q(ok)
p(xi, ok; θ)

Q(ok)
,

≥
Nc∑
i=1

∑
ok∈Oc

Q(ok) log
p(xi, ok; θ)

Q(ok)
,

(17)

where Q(ok) (
∑

ok∈Oc
Q(ok) = 1) denotes a distribution

associated with the prototype ok, and the last step is de-
rived from Jensen’s inequality. According to the EM algo-
rithm, only when p(xi,ok;θ)

Q(ok)
is a constant b, the inequality

Algorithm 1 Pseudo-code of BuCSFR
Input: Training dataset X , Coarse label Y , network fθ,

momentum queue Q, number of clusters K, hyper-
parameter τs and τ ,

for c← 1 to C do
// clustering Xc into K clusters
Oc ← K-means(fθ(Xc))

end
for epoch← 1 to maxEpoch do

for iter ← 1 to maxIter do
sample a mini-batch D from X
for xi ∈ D do

// find nearest prototype
o(vi)← argmaxo∈Oc sim(vi, o)

Bposi ← Eq. (10) // select positives
ωij ← Eq. (11) // calculate weight
Bnegi ← Eq. (13) // select negatives
minimize L← Eq. (14) // network updating

end
end
for c← 1 to C do

// Merging two clusters into one group
merging Xi

c and Xj
c ← Eq. (8)

update oic and ojc
end

end

holds with equality, i.e., the middle is equal to the bottom
in Eq. (17). In this case, the lower bound of Eq. (16) is
maximized. Since p(xi,ok;θ)

Q(ok)
= b, there is∑

ok∈Oc

p(xi, ok; θ) =
∑

ok∈Oc

Q(ok)b∑
ok∈Oc

p(xi, ok; θ) = b
. (18)

Then, we can derive

Q(ok) =
p(xi, ok; θ)∑

ok∈Oc
p(xi, ok; θ)

=
p(xi, ok; θ)

p(xi; θ)
= p(ok;xi, θ),

(19)
where Q(ok) is the posterior prototype (fine-grained clus-
ter) probabilitiy. In BuCSFR, for a query representation
vi of xi, its associated prototype is given by o(xi) =
argmaxok∈Oc sim(vi, ok), where sim(·) is the cosine
similarity function. Thus, Eq. (19) is calculated by



p(ok;xi, θ) = I(o(xi) = ok). If xi belongs to the cluster
represented by the prototype ok, then I(o(xi) = ok) = 1;
otherwise, I(o(xi) = ok) = 0. The analysis in this subsec-
tion corresponds to the BuC module, in which the clusters
are nodes of the constructed dendrogram. And the proto-
types are updated by merging semantically similar clusters.

6.2. M-step in BuCSFR
In this step, ok is fixed and can be treated as a constant.
Ignoring the constant −

∑Nc

i=1

∑
ok∈Oc

Q(ok) logQ(ok) in
Eq. (17), the objective function can be reformulated to max-
imize the lower bound of Eq. (17):

max
θ

Nc∑
i=1

∑
ok∈Oc

Q(ok) log p(xi, ok; θ),

=max
θ

Nc∑
i=1

∑
ok∈Oc

p(ok;xi, θ) log p(xi, ok; θ),

=max
θ

Nc∑
i=1

∑
ok∈Oc

I(xi ∈ ok) log p(xi, ok; θ).

(20)

Following that, since no prior information is provided, we
assume a uniform prior over prototypes, p(ok; θ) = 1/Mc,
then

p(xi, ok; θ) = p(ok; θ)p(xi; ok, θ) =
1

Mc
p(xi; ok, θ).

(21)
This assumption is reasonable because a uniform distribu-
tion makes the inter-prototype difference maximized, indi-
cating a more separable feature distribution. Then, we as-
sume that the feature distribution around each prototype is
an isotropic Gaussian, leading to

p(xi; ok, θ) ≈
exp

(
− (vi−os)

2

2σ2
s

)
∑Mc

k=1 exp
(
− (vi−ok)2

2σ2
k

) , (22)

where xi ∈ os. If ℓ2-normalization is applied to v and o,
then (v − o)

2
= 2− 2v · o. By integrating Eqs. (16), (17),

(20), (21), and (22), the objective function can be reformu-
lated as

θ∗ = argmax
θ

−
Nc∑
i=1

log
exp(vi · os/ϕs)∑Mc

k=1 exp(vi · ok/ϕk)
, (23)

where ϕ ∝ σ2. Considering that the prototype ok is the

average of each cluster {vi|vi ∈ ok}
Nk

c
i=1, Eq. (23) effec-

tively forces the samples within one cluster to be distributed
densely while pushing different clusters apart. This con-
clusion can be extended to other coarse classes. The pro-
cess in this subsection aligns with the SFR module in the

paper, where SFR selects high-quality positives and nega-
tives to optimize the objective function L in Eq. (14) and
learn representations with both local alignment and inter-
fine-grained-class separation, then achieve fine-grained vi-
sual recognition.

In summary, we derive the theoretical support for our
method from the perspective of the EM algorithm. BuCSFR
alternatively optimizes BuC and SFR during training, align-
ing with the E-Step and M-Step of the EM algorithm, re-
spectively.

6.3. Convergence of Our Method
In this subsection, we prove the convergence of BuCSFR.
Let

H(θ) =

Nc∑
i=1

log p(xi; θ) =

Nc∑
i=1

log
∑

ok∈Oc

p(xi, ok; θ),

=

Nc∑
i=1

log
∑

ok∈Oc

Q(ok)
p(xi, ok; θ)

Q(ok)
,

≥
Nc∑
i=1

∑
ok∈Oc

Q(ok) log
p(xi, ok; θ)

Q(ok)
.

(24)
As detailed in Eq. (17), the inequality holds with equality
when Q(ok) = p(ok;xi, θ) (refer to Eq. (19)). Then, at the
t-th E-step, Qt(ok) = p(ok;xi, θ

t) can be estimated by

H(θt) =

Nc∑
i=1

∑
ok∈Oc

Qt(ok) log
p(xi, ok; θ)

Qt(ok)
. (25)

And at the t-th M-step, keeping Qt(ok) = p(ok;xi, θ
t) con-

stant, the network parameters θ is optimized by maximizing
Eq. (25), thus

H(θt+1) ≥
Nc∑
i=1

∑
ok∈Oc

Qt(ok) log
p(xi, ok; θ

t+1)

Qt(ok)
,

≥
Nc∑
i=1

∑
ok∈Oc

Qt(ok) log
p(xi, ok; θ

t)

Qt(ok)
,

= H(θt).

(26)

This equation indicates that with alternatively optimizing
the BuC and SFR modules of BuCSFR, H(θ) increases
monotonically. Therefore, the BuCSFR converges to an (lo-
cal) optimal solution.

7. Dataset Details
ImageNet-1K contains 1,000 classes. For fairness, we fol-
low the setup described in [7], utilizing a downsampled ver-
sion of ImageNet-1K where each image has the resolution
of 32×32. Due to the lack of official coarse labels, we



Table 7. The hierarchy of ImageNet-1K based on WordNet.

Level Classes Number

Coarse
Invertebrate, Domestic animal, Bird, Mammal, Reptile/Aquatic vertebrate, Device, Vehicle,

Container, Instrument, Artifact, Clothing, Others
12

Fine-grained
stingray, jay, bulbul, vulture, jellyfish, flamingo, Yorkshire terrier, . . . , eft, terrapin, agama,

ptarmigan, Blenheim spaniel, jacamar, isopod, fiddler crab
1000

Table 8. Classes of seven taxonomic levels in iNaturalist-2019.

Level Classes Number

Kingdom Animalia, Fungi, Plantae 3

Phylum Arthropoda, Basidiomycota, Chordata, Tracheophyta 4

Class
Agaricomycetes, Amphibia, Aves, Insecta, Liliopsida, Magnoliopsida, Pinopsida, Polypodiopsida,

Reptilia
9

Order

Accipitriformes, Agaricales, Anura, Asparagales, Asterales, Brassicales, Caryophyllales,
Charadriiformes, Coleoptera, Cornales, Dipsacales, Ericales, Fabales, Fagales, Gentianales,

Geraniales, Hymenoptera, Lamiales, Lepidoptera, Liliales, Malpighiales, Myrtales, Odonata,
Oxalidales, Passeriformes, Pinales, Poales, Polypodiales, Ranunculales, Rosales, Sapindales,

Saxifragales, Solanales, Squamata

34

Family
Accipitridae, Amanitaceae, Apidae, Apocynaceae, . . . , Viburnaceae, Violaceae, Viperidae,

Vireonidae
57

Genus Acer, Amanita, Anemone, Argia, Artemisia, . . . , Veronica, Viburnum, Viola, Vireo, Yucca 72

Species
Acer campestre, Acer circinatum, Acer floridanum, Acer ginnala, . . . , Viola adunca, Viburnum

tinus, Yucca pallida, Yucca rupicola, Yucca schidigera, Yucca treculeana
1010

construct them based on the WordNet [6] hierarchy, orga-
nizing the entire dataset into 12 coarse classes that align
with the setting in [7]: ‘Invertebrate’, ‘Domestic animal’,
‘Bird’, ‘Mammal’, ‘Reptile/Aquatic vertebrate’, ‘Device’,
‘Vehicle’, ‘Container’, ‘Instrument’, ‘Artifact’, ‘Clothing’
and ‘Others’, as detailed in Tab. 7. It can be observed that
the dataset consists of two semantic levels.

iNaturalist-2019 offers 7 granularity levels that follow the
biological taxonomy: Kingdom (3 classes), Phylum (4
classes), Class (9 classes), Order (34 classes), Family (57
classes), Genus (72 classes) and Species (1,010 classes).
The top taxonomic level, ‘Kingdom’, comprises three sub-
classes: ‘Animalia’, ‘Fungi’, and ‘Plantae’, which represent
the most coarse-grained categories of the creatures in na-
ture, with significant differences between them. At the next
level, ‘Phylum’, all creatures are categorized into four sub-
classes: ‘Arthropoda’, ‘Basidiomycota’, ‘Chordata’, and
‘Tracheophyta’, with differences among them being less
pronounced than those in ‘Kingdom’. Similarly, at the
‘Species’ level, all samples are categorized into 1,010 cat-
egories with the finest granularity, such as ‘Salvia dorrii’,
‘Salvia apiana’, and ‘Yucca elata’, which convey very subtle
inter-category differences. The aforementioned seven taxo-
nomic levels and their corresponding biological categories
form the hierarchical semantic structure of the iNaturalist-
2019 dataset, as illustrated in Tab. 8.

Table 9. Results (%) of FALCON, DeepDPM and BuCSFR on
four datasets. The best results are in bold.

Metrics R@1 R@2 R@5 R@10 kNN@5 kNN@10

Dataset CIFAR10toy
FALCON [20] 46.81 64.28 83.96 92.98 53.56 55.46
DeepDPM [22] 31.50 39.54 52.36 65.78 31.42 30.88

Ours 93.21 96.10 98.10 99.18 94.60 94.79

Dataset CIFAR100
FALCON [20] 38.88 50.41 65.57 75.43 48.30 49.27
DeepDPM [22] 23.55 28.99 38.93 48.35 28.19 28.96

Ours 73.83 81.59 88.93 93.14 78.84 79.17

Dataset FGVC-Aircraft
FALCON [20] 35.61 46.35 62.26 73.69 40.71 41.07
DeepDPM [22] 13.99 16.24 21.28 28.15 12.67 13.39

Ours 57.97 69.25 82.81 90.07 60.82 61.45

Dataset ImageNet-1K
FALCON [20] 12.67 17.99 27.20 35.98 18.46 20.35
DeepDPM [22] 12.40 13.70 16.82 21.54 11.45 11.55

Ours 23.38 32.09 44.87 54.95 33.37 36.37

8. Additional Experiments and Results

8.1. Comparison with FALCON and DeepDPM

An emerging study, FALCON [20], addresses the fine-
grained class discovery task by learning the mapping rela-
tionship between coarse and fine-grained classes. Another



Table 10. Results(%) of all methods based on ViT.

Dataset CIFAR100 FGVC-Aircraft

Backbone ViT-small ViT-base ViT-small ViT-base

Metrics R@1 K@5 R@1 K@5 R@1 K@5 R@1 K@5

CoIns [38] 72.46 78.78 77.47 82.82 43.53 49.74 44.43 51.07
Grafit [27] 74.46 79.45 78.20 83.19 42.54 48.33 42.63 48.60

MaskCon [7] 73.03 78.14 76.31 81.27 29.49 33.87 29.97 34.44

∆SOTA 6.30 4.95 5.49 3.29 2.88 0.58 6.10 1.83
Ours 80.76 84.40 83.69 86.48 46.41 50.32 50.53 52.90

Figure 5. Finer-grained classes discovered within the coarse
classes Fish and Insect in CIFAR100. Each colored box denotes a
finer-grained class discovered by BuCSFR.

new deep clustering approach, DeepDPM [22], does not
predefine the number of clusters, and incorporate it with a
coarse classification loss. Since their tasks share some simi-
larities with ours, we also perform a comparative evaluation
against them. The results are reported in Tab. 9.

Initially, we followed the experimental setup provided in
the code of FALCON, where the network parameters were
initialized from a pretrained model obtained through time-
consuming self-supervised learning on the same dataset.
The results we obtained align with those reported in their
paper. However, since pretrained models on other datasets
were not publicly available, we used a common model pre-
trained on ImageNet-1K for BuCSFR and all other compet-
ing methods. Under this condition, we observed a decline in
FALCON’s performance, rendering it less competitive. We
attribute this to FALCON’s reliance on the top-down learn-
ing paradigm, see Eq. (3), which makes its performance
heavily dependent on the network parameter initialization.
DeepDPM also shows a significant performance degrada-
tion, especially, on the FGVC-Aircraft dataset. We attribute

Figure 6. R@5 and kNN@5 w.r.t varying K of K-means on CI-
FAR100.

its limited performance to the fact that the Dirichlet Process
Gaussian Mixture Model-based clustering in DeepDPM is
not suitable for learning fine-grained representations, thus
struggling to distinguish between fine-grained classes.

8.2. Results across Different Architecture
To assess the architectural robustness of our method, we re-
placed the ResNet50 backbone with a Vision Transformer
(ViT) and evaluated all competing methods. The MoCo
v3 framework is adapted for the ViT implementation, and
the results are reported in Tab. 10. Notably, since LCR in-
herently relies on convolutional layers, it is incompatible
with ViT and thus excluded from comparison. It can be ob-
served that BuCSFR outperforms all other methods, show-
casing its strong superiority with the ViT architecture. And
an interesting phenomenon emerges when compared with
ResNet50 in the main paper. For all methods, performance
improves on the CIFAR100 but degrades on the FGVC-
Aircraft. We argue that this discrepancy stems from the
well-known data-hungry nature of ViT. The FGVC-Aircraft
dataset, with only 6,667 training images, is likely too small
for ViT to be trained effectively, thus resulting in limited



performances. In contrast, the larger scale of the CIFAR100
allows all methods to better leverage the representational
power of the ViT.

8.3. Coarse-to-fine with Seven Taxonomic Levels
Table 11 showcases Recall@5 and kNN@5 of FALCON,
CoIns, Grafit, MaskCon, LCR, and BuCSFR on iNaturalist-
2019. It can be observed that our method achieves supe-
rior performance across all settings. Notably, MaskCon
performs well when trained with coarser granularity la-
bels but achieves suboptimal results when finer granular-
ity labels are used, showing an opposite trend compared to
CoIns, Grafit, and LCR. This difference can be attributed to
the classification loss in the objective functions of CoIns,
Grafit, and LCR. In contrast, our approach leverages the
BuC module to construct a dendrogram for selecting repre-
sentative positives and high-confidence negatives, ensuring
robust performance regardless of the granularity level of the
training data.

8.4. Fine-grained Class Discovery via Dendrogram
As mentioned in the third contribution in Introduction,
BuCSFR has a capability of discovering novel latent
classes. The reason is that each node of the constructed den-
drogram represents a cluster of semantically similar sam-
ples, which enables BuCSFR to locate cluster centers and
associated samples in feature space for fine-grained class
discovery.

Figure 5 demonstrates that BuCSFR not only identifies
the subclasses provided by CIFAR100 but also discovers
meaningful finer-grained classes within them. For exam-
ple, within the aquarium subclass, BuCSFR discovers dif-
ferent subspecies, and within beetle, it identifies distinct
types such as ladybug and aphid, despite these finer-grained
classes are not provided by the dataset. We believe this ca-
pability could substantially facilitate biological research. In
contrast, other methods, which do not focus on the sepa-
rable representations, fail on the task of fine-grained class
discovery.

8.5. Ablation Study on K-means
Before training, we initialize the dendrogram by using K-
means to reduce computing complexity. Figure 6 shows
the results with varying K in K-means. The stable results
across a wide range of K demonstrate the robustness of our
method.

8.6. Visualization
For a better view, Fig. 7 visualizes the learned features of
five coarse classes in CIFAR100. One can observe BuCSFR
produces more compact clusters with distinct boundaries,
indicating it can learn more separable fine-grained represen-
tations. In addition, we illustrate the dendrogram inferred

by BuCSFR in ‘Plantae’ of iNaturalist-2019, as shown in
Fig. 8. Although the discovered multiple semantic levels
do not exactly align with the taxonomy, it is meaningful by
offering a unique perspective on the biological world.

9. Discussion
As discussed in the Conclusion of the main paper, there is
not always a match between visual and semantic similarity.
In fact, our method targets scenarios lacking fine-grained
semantic labels, and leverages visual similarity to discover
novel knowledge. [23] presents a tourist-recommendation
scenario in which the algorithm must automatically identi-
fies hotspots from a large collection of tourism photos that
annotated simply with the destination, e.g., “Tower Bridge”
(semantic label). Although sharing the common semantic
“Tower Bridge”, each hotspot exhibits unique temporal, lo-
cational, and view-dependent attractions of Tower Bridge to
travers. In this scenario, coarse labels are readily available,
whereas fine-grained semantics of these unique hotspots
remain to be discovered, thus requiring visual similarity-
driven fine grained representation learning. Similarly, in
biodiversity recognition, emerging species often lack se-
mantic labels and can only be distinguished visually. A
case in Fig. 5 shows that previously unlabeled finer-grained
classes can be identified via visual similarity, facilitating
taxonomic research. In the future work, we will explore
the integration of knowledge from Large Language Models
to inject high-level semantics into representation learning.
This would allow the model to not only discover visually
knowledge but also to align them with the human cogni-
tion, leading to fine-grained representations that are both
visual-driven and semantically rich.



Table 11. R@5 / kNN@5 (%) on iNaturalist-2019 dataset with seven semantic levels.

Train(→)
(↓)Test

kingdom
3

phylum
4

class
9

order
34

family
57

genus
72

species
1010

FA
L

C
O

N
[2

0]

kingdom
::::
96.76

:
/
:::::
91.30 - - - - - -

phylum 94.65 / 85.32
::::
95.10

:
/
:::::
88.13 - - - - -

class 88.08 / 75.04 89.21 / 77.74
::::
90.29

:
/
:::::
80.48 - - - -

order 54.52 / 32.82 57.62 / 37.13 60.91 / 41.28
::::
69.21

:
/
:::::
52.07 - - -

family 45.40 / 23.88 49.71 / 28.32 53.37 / 32.30 62.70 / 43.11
::::
63.62

:
/
:::::
45.54 - -

genus 40.91 / 21.02 45.20 / 24.92 49.43 / 28.98 59.29 / 39.59 60.44 / 42.03
::::
61.54

:
/
:::::
43.14 -

species 11.00 / 4.64 13.71 / 5.81 16.49 / 7.77 25.06 / 13.96 26.78 / 15.21 28.03 / 16.55
::::::::::
39.63 / 21.27

C
oI

ns
[3

8]

kingdom
::::
98.74

:
/
:::::
97.30 - - - - - -

phylum 97.99 / 95.59
::::
98.33

:
/
:::::
96.59 - - - - -

class 95.65 / 90.16 96.09 / 91.18
::::
97.30

:
/
:::::
94.62 - - - -

order 79.79 / 64.54 80.62 / 65.84 84.16 / 71.65
::::
93.11

:
/
:::::
87.56 - - -

family 75.13 / 57.79 76.11 / 59.04 80.21 / 64.82 90.36 / 81.00
::::
92.09

:
/
:::::
86.09 - -

genus 72.63 / 54.56 73.66 / 55.70 77.87 / 61.57 88.78 / 77.62 90.87 / 82.74
::::
91.65

:
/
:::::
85.58 -

species 35.40 / 21.10 35.85 / 21.31 40.15 / 24.02 53.89 / 35.77 57.97 / 38.60 60.47 / 40.78
::::::::::
74.64 / 60.51

G
ra

fit
[2

7]

kingdom
::::
98.93

:
/
:::::
97.26 - - - - - -

phylum 98.24 / 95.90
::::
98.45

:
/
:::::
96.74 - - - - -

class 96.17 / 91.03 96.53 / 92.05
::::
97.36

:
/
:::::
94.74 - - - -

order 81.57 / 67.69 81.94 / 68.14 85.34 / 73.47
::::
93.12

:
/
:::::
87.71 - - -

family 77.23 / 61.05 77.52 / 61.43 81.60 / 67.07 90.52 / 81.61
::::
91.86

:
/
:::::
85.75 - -

genus 74.82 / 57.80 75.25 / 58.21 79.40 / 63.73 89.05 / 78.76 90.56 / 82.66
::::
91.20

:
/
:::::
84.86 -

species 37.40 / 23.03 37.37 / 22.62 42.34 / 26.41 55.32 / 38.30 58.21 / 40.07 60.37 / 41.95
::::::::::
73.92 / 59.26

M
as

kC
on

[7
]

kingdom
::::
98.78

:
/
:::::
97.56 - - - - - -

phylum 98.29 / 96.87
::::
98.38

:
/
:::::
97.08 - - - - -

class 96.79 / 93.59 96.92 / 93.75
::::
97.35

:
/
:::::
95.08 - - - -

order 86.67 / 76.28 87.11 / 76.89 88.36 / 79.24
::::
92.97

:
/
:::::
87.98 - - -

family 83.55 / 70.53 83.97 / 71.42 85.47 / 73.92 90.66 / 82.72
::::
91.62

:
/
:::::
85.36 - -

genus 81.64 / 67.11 82.23 / 68.19 83.72 / 70.53 89.35 / 79.80 90.44 / 82.59
::::
91.06

:
/
:::::
84.34 -

species 45.04 / 27.60 45.71 / 28.47 47.53 / 29.65 56.53 / 38.96 58.51 / 39.84 60.13 / 41.46
::::::::::
69.33 / 52.90

L
C

R
[2

4]

kingdom
::::
98.96

:
/
:::::
97.92 - - - - - -

phylum 98.30 / 95.48
::::
98.81

:
/
:::::
97.69 - - - - -

class 95.65 / 89.42 96.54 / 91.89
::::
98.04

:
/
:::::
95.86 - - - -

order 76.74 / 60.47 78.44 / 62.88 82.11 / 68.34
::::
93.70

:
/
:::::
88.67 - - -

family 70.91 / 52.30 73.17 / 54.52 77.30 / 60.10 90.63 / 81.08
::::
92.42

:
/
:::::
87.10 - -

genus 67.72 / 48.65 69.99 / 50.90 74.26 / 56.36 88.73 / 77.27 91.04 / 83.27
::::
91.64

:
/
:::::
85.77 -

species 30.07 / 18.03 31.30 / 18.65 35.82 / 22.15 53.19 / 36.86 58.00 / 39.99 59.62 / 41.94
::::::::::
72.63 / 60.25

B
uC

SF
R

kingdom
::::
98.99

:
/
:::::
98.14 - - - - - -

phylum 98.56 / 97.38
::::
98.88

:
/
:::::
97.92 - - - - -

class 97.40 / 94.30 97.79 / 94.82
::::
98.04

:
/
:::::
96.26 - - - -

order 87.91 / 78.74 88.53 / 79.21 89.40 / 81.35
::::
94.15

:
/
:::::
89.91 - - -

family 85.59 / 72.69 85.93 / 73.66 87.28 / 75.88 91.21 / 84.47
::::
93.04

:
/
:::::
88.17 - -

genus 84.02 / 70.83 84.69 / 71.91 85.25 / 73.17 90.39 / 81.78 91.63 / 84.19
::::
92.81

:
/
:::::
87.58 -

species 47.57 / 30.97 48.24 / 31.34 50.08 / 33.10 59.46 / 41.13 61.73 / 42.51 63.47 / 44.60
::::::::::
76.84 / 62.92



Figure 7. T-SNE visualization of learned representation on CIFAR100. Different colors represent the corresponding fine-grained classes.



Figure 8. The dendrogram inferred by BuCSFR in ‘Plantae’ of iNaturalist-2019.
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