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Image/Batch Size ConvNeXt-T Swin-T VMamba-T VSSD-T

224/128
GFLOPs 4.5 4.5 4.9 5.0
Params. (M) 29 28 30 28
Memory (MB) 1670 2402 3204 1946
Acc. (%) 82.1 81.3 82.6 83.8

384/128
GFLOPs 13.1 14.0 14.4 15.4
Memory (MB) 4654 8118 9169 5537
Acc. (%) 81.0 80.7 82.4 83.5

512/128
GFLOPs 23.3 26.6 25.4 27.4
Memory (MB) 8181 19731 16204 9751
Acc. (%) 78.0 79.0 80.9 81.9

640/64
GFLOPs 36.5 45.0 39.6 42.8
Memory (MB) 6417 20893 12710 7645
Acc. (%) 74.3 76.6 78.6 79.4

768/64
GFLOPs 52.5 70.7 57.1 61.7
Memory (MB) 9189 OOM 18262 10954
Acc. (%) 69.5 73.1 74.7 75.9

1024/32
GFLOPs 93.3 152.5 101.5 109.6
Memory (MB) 8182 OOM 16276 9750
Acc. (%) 55.4 61.9 62.3 65.0

Table 1. Performance comparison of VSSD-T against widely used
vision models on ImageNet-1K across different image resolutions
on an RTX 4090 GPU. OOM indicates out-of-memory errors.

1. Analyzing Generalization Ability Across In-
creasing Input Resolutions.

Following VMamba [3], we also present detailed compar-
ison on ImageNet-1K with increasing image resolutions
with CNN-based ConvNext [5], attention-based Swin [4]
and SSM-based VMamba [3]. The detailed results are
presented in Table 1. At the standard 224×224 resolu-
tion, VSSD-T achieves 83.8% top-1 accuracy, outperform-
ing ConvNeXt-T (82.1%), Swin-T (81.3%), and VMamba-
T (82.6%) while maintaining a competitive parameter count
of 28M and GFLOPs count of 5.0. The performance ad-
vantage of VSSD-T becomes more pronounced at higher
resolutions. At 384×384, our model achieves 83.5% ac-
curacy, surpassing VMamba-T by 1.1 percentage points.
This trend continues through 512×512 (81.9%), 640×640
(79.4%), and 768×768 (75.9%) resolutions, where VSSD-

T consistently outperforms all competitors. Notably, at
the 1024×1024 resolution, VSSD-T achieves 65.0% ac-
curacy, significantly outperforming ConvNeXt-T (55.4%),
Swin-T (61.9%), and VMamba-T (62.3%). Our VSSD also
demonstrates significantly better memory efficiency than
both Swin-T and VMamba-T. For instance, at 512×512
resolution and batch size of 128, VSSD-T consumes only
9751MB of memory compared to VMamba-T’s 16204MB
and Swin-T’s 19731MB. At higher resolutions (768×768
and 1024×1024), Swin-T encounters out-of-memory errors,
while VSSD-T continues to operate efficiently. These re-
sults highlight VSSD-T’s exceptional balance between ac-
curacy, computational efficiency, and memory usage, mak-
ing it particularly well-suited for high-resolution image
analysis tasks.

2. Additional Comparison.

Figure 1. Efficiency comparison with more SOTA works with the
same setting as the main paper.

To establish a more comprehensive analysis for our
VSSD model, we present detailed comparisons with more
advanced architectures specially designed for vision per-
ception tasks, including ConvFormer [10], SG-Former [7],
SMT [2], MaxViT [8], BiFormer [11], CAFormer [10], Ef-
ficientVMamba [6] and Groot-VL [9]. As shown in Ta-
ble 2, we categorize the comparison across three model
scales: tiny, small, and base according to parameter and
FLOPs counts. Our VSSD consistently demonstrates su-
perior performance across all scales when evaluated on
the ImageNet-1K dataset. In the tiny model category,



VSSD achieves 83.8% top-1 accuracy, matching BiFormer
while outperforming other attention-based models like SG-
Former (83.2%) and SSM-based models like GrootVL
(83.4%). The performance advantage of VSSD extends
to the base model category, where it reaches 85.4% accu-
racy, surpassing CAFormer (85.2%) and GrootVL (84.8%).
This comprehensive comparison validates the effectiveness
of our proposed VSSD as a powerful alternative to existing
paradigms in vision model architecture. Additionally, we
also provide efficiency comparison with more SOTA works
listed in the main paper in Fig .1.

Method Type #Param. FLOPs Top-1
Acc(%)

Tiny Models
ConvFormer [10] Conv 27M 3.9G 83.0
SG-Former [7] Attn 23M 4.8G 83.2
MaxViT [8] Attn 31M 5.6G 83.6
BiFormer [11] Attn 26M 4.5G 83.8
SMT-T [2] Conv+Attn 20M 4.8G 83.7
CAFormer [10] Attn 26M 4.1G 83.6
EffVMamba [6] Conv+SSM 33M 4.0G 81.8
GrootVL [9] SSM 30M 4.8G 83.4
VSSD SSD 28M 5.0G 83.8

Small Models
ConvFormer [10] Conv 40M 7.6G 84.1
SG-Former [7] Attn 39M 7.5G 84.1
MaxViT [8] Attn 69M 11.7G 84.5
CAFormer [10] Attn 39M 8.0G 84.5
BiFormer [11] Attn 57M 9.8G 84.3
SMT-T [2] Conv+Attn 32M 7.7G 84.3
GrootVL [9] SSM 51M 8.5G 84.2
VSSD SSD 50M 8.1G 84.6

Base Models
ConvFormer [10] Conv 57M 12.8G 84.5
SG-Former [7] Attn 78M 15.6G 84.7
CAFormer [10] Attn 56M 13.2G 85.2
MaxViT [8] Attn 120M 23.4G 85.0
GrootVL [9] SSM 91M 15.1G 84.8
VSSD SSD 89M 16.1G 85.4

Table 2. Additional Comparison across More Advanced Mod-
els on ImageNet-1K.

3. More Detailed information of VSSD
More Details of the Proposed VSSD Model. The VSSD
model initiates with a series of overlapping convolutions
serving as the stem, followed by four progressive stages
of processing. First three stages are equipped with VSSD
Block, comprising a NC-SSD block and a FFN. We provide
illustration in Fig. 2 for clarity. Besides, the detailed setting
of VSSD variants are shown in the Tab. 3.
More Detailed Configuration of ImageNet-1K Train-
ing. Our experiments are conducted using the ImageNet-

1K dataset [1]. Each model undergoes training for 300
epochs, which includes a 20-epoch warm-up phase. We em-
ploy the AdamW optimizer, setting the betas to (0.9, 0.999)
and the momentum to 0.9. A cosine decay scheduler man-
ages the learning rate, complemented by a weight decay rate
of 0.05. The batch sizes and peak learning rates are set to
1024/1e-3 for the Tiny and Small models, and 2048/1.2e-3
for Base model, respectively. To enhance model accuracy
and generalization, we incorporate exponential moving av-
erage (EMA) techniques and apply label smoothing with a
coefficient of 0.1. The stochastic depth drop rates for our
Tiny, Small, and Base models are set at 0.2, 0.4, and 0.6,
respectively. Further details are provided in Tab. 4.

4. Limitations
This paper lacks experiments involving larger models and
more extensive datasets, such as those using the ImageNet-
22K benchmark [1]. Consequently, the scalability of the
proposed VSSD model remains an area ripe for further ex-
ploration.
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Figure 2. Overall Architecture of the Proposed VSSD Model. Local Perception Units (LPU) are omitted in this visualization for brevity.

Model Blocks Channels Heads SSD Ratio #Param FLOPs

VSSD-Tiny [2, 2, 8, 2] [96, 192, 384, 768] [4, 4, 8, 16] 1 28M 5.0G
VSSD-Small [2, 4, 15, 4] [96, 192, 384, 768] [4, 4, 8, 16] 1 51M 8.1G
VSSD-Base [3, 4, 18, 5] [96, 192, 384, 768] [3, 6, 12, 24] 2 89M 16.1G

Table 3. Model Specifications of VSSD varints.

[11] Lei Zhu, Xinjiang Wang, Zhanghan Ke, Wayne Zhang, and
Rynson Lau. Biformer: Vision transformer with bi-level
routing attention. In CVPR, 2023. 1, 2



Settings Tiny Small Base

Input resolution 2242

Epochs 300
Batch size 1024 1024 2048
Optimizer AdamW
Adam ϵ 1e-8
Adam (β1, β2) (0.9, 0.999)
Learning rate 1e-3 1e-3 1.2e-3
Learning rate decay Cosine
Warmup epochs 20
Weight decay 0.05
Rand Augment rand-m9-mstd0.5-inc1
Cutmix 1.0
Mixup 0.8
Cutmix-Mixup switch prob 0.5
Random erasing prob 0.25
Label smoothing 0.1
Stochastic depth rate 0.2 0.4 0.6
Random erasing prob 0.25
EMA decay rate 0.9999

Table 4. Detailed Configuration Parameters for ImageNet-1K Training.
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