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OD-RASE: Ontology-Driven Risk Assessment and Safety Enhancement for

1. Structuring Infrastructure Improvement
Process as Ontology

The 30 types of accident-causing road structures and
26 types of infrastructure improvement proposals defined
through expert knowledge include elements that overlap or
are time-dependent (e.g., traffic volume, moving vehicles),
which fall outside the scope of this research. Moreover,
because these elements were derived from a wide variety
of real-world traffic-accident cases, they are very granular
and therefore not well-suited as a data structure for training
our models. For this reason, three experts reached consen-
sus to merge similar elements and exclude those that are
time-dependent.

1.1. Consolidation of Similar Elements and Exclu-
sion of Time-Dependent Elements

The accident-causing road structures and countermea-
sure policies we defined are based on analyses of ac-
tual traffic accidents. Consequently, prior studies summa-
rizing conventional infrastructure improvement processes
[1, 7, 8, 10, 11, 16, 17] typically classify these elements
at a fairly fine-grained level. As a result, multiple simi-
lar elements exist, which hinders effective model training.
Additionally, since the objective of this study is to analyze
and improve risks arising from road infrastructure, any time-
dependent factors must be removed. For these reasons, from
the initially defined 30 accident-causing road structures and
26 infrastructure improvement proposals, we carried out
the merging of similar elements and the exclusion of time-
dependent elements. This step was performed by the same
experts who created the dataset.

Fig. 1 and Fig. 2 illustrate the processes by which the
accident-causing road structures and the infrastructure im-
provement proposals were merged or excluded, respectively.
The merging of similar elements was grouped by road en-
vironment. As a result of these procedures, the accident-
causing road structures were reduced to 15 types, and the
infrastructure improvement proposals were reduced to 12

types.
1.2. Exclusion of Elements Close to Corner Cases

In the Sec. 1.1, we consolidated elements by road environ-
ment and removed elements stemming from dynamic fac-
tors. However, in real-world road environments, countless
corner cases exist. Because our original definitions are quite
granular, certain elements ended up disproportionately ad-
dressing corner-case situations. In existing datasets as well,
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Figure 1. Merging and exclusion of elements in accident-causing
road structures.
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Figure 2. Merging and exclusion of elements in infrastructure
improvement proposals.
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corner cases.
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Figure 4. Exclusion of corner-case elements in infrastructure im-
provement proposals.

these corner-case elements appear so infrequently that they
could risk further imbalancing the data. Consequently, us-
ing expert knowledge, we carried out an additional exclusion
of such corner-case elements from the accident-causing road
structures and countermeasure policies that remained after
the earlier merging and exclusion step. An overview of this
process is shown in Fig. 3 and Fig. 4. As a result, the final
accident-causing road structures are reduced to 11 types and
the infrastructure improvement proposals to 10 types.

2. G2CoT:Graph-Based Grounded CoT
Prompt

The proposed G2CoT uses a carefully designed CoT (chain-
of-thought) prompt [19] to mimic the expert reasoning pro-
cess when drafting infrastructure improvement proposals.
Fig. 7 shows the details of our proposed G2CoT. As shown
in Fig. 7, it generates outputs in four stages: (1) traffic
risks, (2) accident-causing road structures, (3) accident oc-
currence processes, and (4) infrastructure improvement pro-
posals. Specifically, Step 1 produces a textual explanation
of static traffic risks from any given driving-scene image. In
Step 2, referencing both the image and the results from Step
1, the model infers the accident-causing factors and selects
all the elements that match from the accident-causing road
structures we defined in Sec. 1. In Step 3, referencing Steps
1 and 2, it predicts how an accident might unfold. Since
infrastructure improvements for the same accident-causing
factor can differ depending on the accident occurrence pro-
cess, Step 3 aids in predicting infrastructure improvements
by considering the accident process. Finally, in Step 4, ref-
erencing Steps 2 and 3, the model infers the infrastructure
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Figure 5. Changes in data distribution before and after filtering for
Mapillary Vistas. Blue: before filtering, orange: after filtering.
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Figure 6. Changes in data distribution before and after filtering for
BDDI100K. Blue: before filtering, orange: after filtering.

improvement proposals (i.e., countermeasure policies) and
selects all applicable elements from those defined in 1. By
performing this context-aware inference at each step, we can
automatically build a dataset.

2.1. Changes in Data Distribution

We now provide a quantitative comparison of the data dis-
tribution before and after applying our expert-knowledge-
based filtering on the dataset automatically constructed via
G2CoT. We compare the distributions for accident-causing
road structures and countermeasure policies. Fig. 5 and
Fig. 6 show the changes in data distribution for Mapillary
Vistas [14] and BDD100K [20], respectively. From both
figures, we see that the output from GPT-40 [2] contains a
substantial amount of incorrect data, resulting in more than
50% of generated annotations being discarded by our data



.. Mapillary BDD100K
Vision Encoder  Text Encoder Recall Precision F1 Acc \‘ Recall  Precision F1 Acc
RoBERTa-Base[13] | 74.85 82.06 79.19 64.25 | 86.54 88.55 87.53 73.50
ResNet-50[9] Flan-T5-x1[5] 72.07 12.50 21.30  0.00 73.94 13.54 22.89  0.00
Long-CLIP[21] 77.17 76.96 77.06 58.92 | 83.35 88.74 85.96 71.04
RoBERTa-Base[13] | 71.26 78.76 68.05 63.50 | 88.80 86.44 87.60 72.69
ViT-B[6] Flan-T5-x1[5] 29.01 3.76 6.65 0.00 24.25 3.33 5.85 0.00
Long-CLIP[21] 76.64 80.53 78.54 61.68 | 85.27 89.35 87.26 73.33
RoBERTa-Base[13] | 64.08 77.80 70.28 57.00 | 89.17 85.92 87.51 72.36
CLIP[15] Flan-T5-x1[5] 2421 4.44 7.50 0.00 22.58 4.28 7.20 0.00
Long-CLIP[21] 77.10 82.66 79.79 65.06 | 84.91 90.02 87.39  73.60
RoBERTa-Base[13] | 64.08 77.80 70.28 57.00 | 89.10 85.92 87.48 72.30
Long-CLIP[21]  Flan-T5-xI[5] 27.80 6.50 10.54  0.00 24.07 5.74 9.27 0.00
Long-CLIP[21] 76.44 83.89 7999 65.09 | 86.23 88.99 87.59 73.96

Table 1. Quantitative evaluation results for predicting accident-causing road structures. The best, second and third best performances are

shown in | First|, Second , Third , respectively.

filtering.
Modal Precision  Recall F1 Acc
CLIP 54.98 7254 6255 32.60
Long-CLIP 66.34 5794 61.86 28.22
Ours 76.44 83.89 79.99 65.09

Table 2. Ablation study on grounding block is most effective for
predicting infrastructure improvement proposals.

3. Versatility of the proposed method

This research has demonstrated that our OD-RASE model
can accurately predict infrastructure improvement proposals
for road structures. We have also shown that it can generalize
to unknown road structures. In this section, we show that
OD-RASE is also capable of predicting accident-causing
road structures, not just the infrastructure improvement pro-
posals. We employ the Mapillary Vistas [14] and BDD100K
[20] datasets.

3.1. Predicting Accident-Causing Road Structures

We evaluate the ability of OD-RASE to predict road struc-
tures that lead to traffic accidents, using supervised learning.
Tab. 1 presents quantitative evaluations on the Mapillary and
BDD100K datasets. From Tab. 1, it is evident that models
using RoBERTa-Base [13] or Long-CLIP [21] as text en-
coders successfully predict road structures that cause acci-
dents, across multiple vision encoders. By contrast, models
using Flan-T5-x1 [5] exhibit high recall but low precision,
resulting in too many false positives. Overall, the best per-
formance is obtained when both the vision and text encoders
are Long-CLIP.

Table 2 shows an ablation study evaluating the impact of
the grounding block in OD-RASE. For this experiment, we

used Long-CLIP as the vision and text encoder and trained
on Mapillary. From Tab. 2, OD-RASE, which includes the

Data filtering | Precision Recall F1 Acc
38.25 8433 5263 1.01
v 76.44 83.89  79.99 64.09

Table 3. Ablation study on effectiveness of ontology-driven data
filtering. Results indicate that filtering improved overall model
performance.

grounding block that integrates image and text, outperforms
vanilla CLIP or Long-CLIP by a large margin. This confirms
that our proposed grounding block is effective.

3.2. Effectiveness of Dataset Filtering

In this experiment, we used Long-CLIP as the vision and
text encoder, using Mapillary as our dataset.

Tab. 3 shows the performance with and without data fil-
tering. When the training data were not filtered, the accuracy
on the filtered evaluation set was notably low. Specifically,
in the absence of filtering, the model demonstrated a high
F1-Score of 52.63 pt but a low Accuracy of 1.01 pt, making
it difficult to correctly identify the road structures leading
to accidents. In contrast, once data filtering was used, the
model achieved an F1-Score of 79.99 pt and an Accuracy of
64.09 pt, indicating a more robust learning outcome. These
results strongly support the necessity of our ontology-based
data filtering grounded in expert knowledge.

3.3. Zero-shot Prediction

We conduct zero-shot prediction experiments, analogous to
the infrastructure improvement proposals task, for accident-
causing road structures. Tab. 4 shows results for models
trained on BDD 100K and evaluated on Mapillary Vistas, and
Tab. 5 for those trained on Mapillary Vistas and evaluated



Method Recall Precision F1-Score Accuracy
Vision Encoder [ Text Encoder [ val test val test val test val test
Ours Baseline
ResNet-50[9] 71.68 74776 7728 79.76 7438 77.18 58.48 61.38
ViT-B[6] 76.84 77.77 79.68 80.58 | 7824 79.15 6243 63.83
Long-CLIP[21]

CLIP[15] 7475 75.63 | 80.81 8222 77.66 7879 61.68 63.25
Long-CLIP[21] 7549 77.10 80.22 81.54 7778 7926 62.50 64.11
Generalist Models

GPT-40[2] 47.19 51.87 17.86 19.66 2527 27.81 16.86 18.59
LLaVA-1.5[12] 7552 7574 1471 1551 22.03 2293 14.05 14.86
Qwen2-VL[18] 8342 8442 2143 2251 3298 3428 21.07 22.18

Phi-3[3] 52.15 51.35 21.69 21.60 2894 2873 1838 18.24
InternVL2[4] 68.27 7236 21.07 22.63 30.73 32774 2045 21.85

Table 4. Zero-shot prediction of accident-causing road structures. Models are trained on BDD100K and evaluated on Mapillary.

Method Recall Precision F1-Score Accuracy
Vision Encoder \ Text Encoder \ val test val test val test val test
Ours Baseline
ResNet-50[9] 81.10 81.50 88.37 88.16 84.58 8470 6835 68.24
ViT-B[6] Long-CLIP[21] 75.12  76.64 82.14 83774 7847 80.03 63.02 65.00
CLIP[15] 81.70 82.04 90.86 90.95 86.04 86.26 71.15 71.66
Long-CLIP[21] 83.14 83.72 90.07 89.96 86.46 86.73 7145 72.02
Generalist Models

GPT-40[2] 51.31 4832 1992 18.66 2794 2621 18.88 17.71
LLaVA-1.5[12] 73.88 75.60 17.34 18.16 25.00 2621 1630 17.08
Qwen2-VL[18] 86.31 8692 24.81 25.08 37.09 3748 2436 24.67
Phi-3[3] 41.70  41.27 2213 22.01 2748 2748 1747 17.48
InternVL2[4] 76.32 7691 26.68 2678 3748 37.65 2575 25091

Table 5. Zero-shot prediction of accident-causing road structures. Model was trained on Mapillary and evaluated on BDD100K.

on BDD100K. In both cases, the vision and text encoder
pair of Long-CLIP achieves the highest performance, for
instance an F1-Score of 79.26 pt and Accuracy of 64.11 pt
in Tab. 4. In contrast, using a generalist model like Qwen2-
VL [18] yielded an F1-Score of 34.28 pt and an Accuracy
of 22.18 pt, indicating that predicting the factors leading to
accidents in unknown domains is difficult.

Tab. 5 shows the results for models trained on Mapillary
and evaluated on the validation and test sets of BDD100K.
Among our baseline variants, the combination of Long-
CLIP for both the vision encoder and text encoder yielded
an F1-Score of 86.73pt and an Accuracy of 72.02pt on
the Mapillary test set. Our broad experiments show that
generalist models alone struggle to identify road structures
that accident-causing road structures or propose meaningful
infrastructure improvements.
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/GZCoT Prompt

You are an AT responsible for proposing infrastructure
improvement plans to reduce traffic accidents.

Given images from a car's front camera, you analyze
the environment, assess potential traffic risks,

and suggest infrastructure enhancements.

Step 1: Explanation of Traffic Risk

Carefully observe the images and focus on

the surrounding road structure environment and
describe the traffic risk in a minimum of 300 words
and a maximum of 400 words.

Step 2: Factors Causing_Accidents

Based on the traffic risks identified in Step 1 and surrounding environment, explain the factors
that could cause accidents. Also, select all applicable items from the [Factors Causing Accidents]
class.

Step 3: Accident Occurrence Process
Using the content from Steps 1 and 2, explain the process by which an accident might occur.

Step 4: Countermeasure Policy

Based on the contents of Steps 2 and 3, propose infrastructure improvement plans to prevent
accidents. Also, select all applicable items from the [Countermeasure Policy] class.
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Figure 7. Details of the G2CoT prompt used when constructing the OD-RASE Dataset.
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