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A. Appendix

In the appendix, we provide additional information
as listed below:

• Appendix A.1 provides additional analysis on fea-
ture distance.

• Appendix A.2 provides the design choices of VeRA
block.

• Appendix A.3 provides the details of hyperparam-
eters and implementations.

• Appendix A.4 provides the analysis on different
number of samplings.

• Appendix A.5 provides the category-level results
on GenEval benchmark.

• Appendix A.6 provides additional qualitative re-
sults on image generation benchmarks.

• Appendix A.7 provides the details of datasets and
metrics used for experiments.

• Appendix A.8 provides the discussion and limita-
tion on our method.

A.1. Additional Analysis on Feature Distance

To further investigate the alignment of velocity fea-
tures across layers, we analyze the feature distance
between all intermediate layers and the final layer. This
extends the analysis from Figure 2 in the main paper,
where only the distance between the features of key
layer and the final layer was measured. By examining
the full layer-wise distance trends, we can better under-
stand how intermediate representations evolve toward
the final velocity feature. As shown in Figure 1, Deep-
Flow consistently reduces the feature distance across
layers, ensuring a smooth progression toward the fi-
nal layer representation. Even with deep supervision
and the integration of the VeRA block at the key layer
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Figure 1. Velocity Feature Distance between All Lay-
ers and Final Layer. We provide additional analysis on
feature distance to quantify the alignment between velocity
features at each layer and one in the final layer. The results
demonstrate that DeepFlow effectively aligns all intermedi-
ate features with the final one, even when deep supervision
and the VeRA block are applied to a key layer (6th).

(6th), DeepFlow maintains effective feature alignment
throughout the network.

A.2. Design Choices of VeRA Block

We present the design choices for the VeRA block, a
core component of our DeepFlow, as illustrated in Fig-
ure 2. Both designs leverage acceleration to refine pre-
ceding velocity features using an ACC MLP, adaptive
layer normalization, and cross-space attention. The
design in the left panel is motivated by first-order dy-
namics using addition of velocity and modulated accel-
eration. Specifically, a∗t1 from ACC MLP is modulated
by dt1→t2 , and added with v∗t1 . In base configuration,
this approach achieves 29.3 FID, outperforming SiT-
B/2 [11] (34.4 FID)—but underperforms compared to
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Figure 2. Design Choice for VeRA block. The left panel utilizes addition of velocity and acceleration, while right panel
(proposed VeRA block) is differentiated by modulating concatenated feature of velocity and acceleration.

the proposed VeRA block (in the right panel of Fig-
ure 2). Although the left design adheres more closely
to first-order dynamics, modulating acceleration alone
with a time-gap is insufficient to fully adjust the preced-
ing velocity features. In contrast, our proposed VeRA
optimizes feature alignment by modulating a concatena-
tion of velocity and acceleration features, which results
in superior generation performance (28.1 FID).

A.3. Hyperparameters and Implementations

We provide detailed explanation about hyperparam-
eters and implementations used for DeepFlow in follow-
ing orders.

• Image Encoder: We utilize VAE [8] encoder to
pre-compute the latent feature of input as what
SiT [11] and REPA [16] did. The checkpoint of
VAE encoder is from stability/sd-vae-ft-ema, which
was pre-trained in Stable Diffusion [14]. Then, we
flatten the latent features with patch size of 2.

• Transformer Blokcs: We employ same setting of
DiT [12] to construct transformer blocks including
branches of pre- and post-VeRA block. What we
differentiate is we condition them with different
time-step during training to train VeRA block with
time-gap prior. We set time-gap to be same or
under 0.01 as we ablated in main paper.

• VeRA Block: As the first core block of VeRA
block, ACC MLP consists of 4 linear layers with

SiLU [2] activation. Then, adaptive layer normal-
ization with zero-initialization for final linear inputs
time-gap to produce scale and shift for concate-
nated features of velocity and acceleration. For
final part, cross-space attention module is per-
formed with layer pre-norm modulated velocity
feature space (key and value) and pre-norm spatial
feature space (query).

• Optimizer and Training: To optimizer baselines
and our DeepFlow, we utilize AdamW [10] with
constant learning rate of 1e-4, (β1, β2) = (0.9,
0.999) without weight decay and train the models
with batch size of 256. For faster training, all of the
experiments including DeepFlow and baselines were
conducted using Pytorch Accelerate [5] pipeline
with mixed-precision (fp16), and A100 GPUs.

• SSL Alignment: As demonstrated in our main
paper, we employ an SSL encoder for addi-
tional feature alignment, following the approach of
REPA [16]. Unlike REPA, which aligns a manually
selected key layer with the SSL encoder, we incor-
porate external alignment after the output of each
VeRA block in a more unified manner. For instance,
in DeepFlow-B/2-2T with SSL alignment, the re-
fined features produced by the VeRA block are
further aligned using either DINOv1 or DINOv2. In
DeepFlow-XL/2-3T with SSL alignment, DINOv2

is applied twice—once after each VeRA block. No-
tably, we also experimented with applying SSL



model SSL align Overall↑ Single object Two object Counting Colors Position Color attr.

SiT-24 [11]
✗ 0.2672 0.8312 0.1364 0.2062 0.4069 0.0200 0.0025

DINOv2 0.3166 0.8969 0.2778 0.2031 0.4495 0.0475 0.0250

DeepFlow-24-3T
✗ 0.2957 0.8625 0.1919 0.2156 0.4468 0.0250 0.0325

DINOv2 0.3458 0.9500 0.3460 0.2406 0.4681 0.0325 0.0375

Table 1. Zero-Shot Text-to-Image Generation Results on GenEval benchmark. We trained models with MS-
COCO [9], following the training setting of REPA [16] and evaluated them with GenEval [4] benchmark.

model SSL align CFG FID↓ sFID↓ IS↑

DeepFlow-XL/2-3T

✗ 1.3 1.98 4.39 256.7
✗ 1.325 1.97 4.39 264.7
✗ 1.35 2.00 4.4 271.6

DINOv2 1.275 1.78 4.45 263.4
DINOv2 1.3 1.77 4.44 271.3
DINOv2 1.325 1.80 4.44 277.7

Table 2. Optimal CFG [6] Scale Search. We tested
DeepFlow-XL/2-3T (trained with 400 epochs) with different
CFG (classifier-free guidance) scales.

alignment twice in the original SiT [11], but this
did not lead to any performance improvement.

• Inference (sampling): In line with SiT [11] and
REPA [16], we adopt an SDE sampling strategy
and perform 250 steps to ensure a fair compar-
ison. We also search for the optimal classifier-
free guidance (CFG) scale during the evaluation
of DeepFlow. As shown in Table 2, DeepFlow-
XL/2-3T without SSL alignment achieves its best
FID performance at a CFG scale of 1.325, whereas
DeepFlow-XL/2-3T with SSL alignment reaches
optimal performance at a CFG scale of 1.3.

A.4. Sensitivity to Different Number of Samplings

Figure 3 illustrates the performance sensitivity of
our DeepFlow model to varying numbers of sampling
steps and highlights its robustness compared to SiT [11].
Notably, DeepFlow maintains stable performance across
sampling steps ranging from 50 to 250 (with a mean
FID of 11.1 and a standard deviation of 1.21), suggest-
ing that it is less sensitive to changes in the number of
steps than SiT [11], which exhibits a higher mean FID
of 14.8 and a standard deviation of 1.52. Furthermore,
DeepFlow surpasses SiT’s performance at 250 steps
even when using only 50 steps. These results under-
score the efficiency of DeepFlow: it not only reduces
computational cost by requiring fewer steps, but it also
delivers superior overall performance.

A.5. More Detailed Results on GenEval Benchmark

Table 1 presents a zero-shot text-to-image generation
comparison between DeepFlow-2/3T and SiT [11], both
using 24 transformer layers on GenEval benchmark [4].
Overall, DeepFlow outperforms SiT across most cate-
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Figure 3. Ablation Study on The Number of Sampling
Steps. We provide additional analysis on performance sen-
sitivity of our DeepFlow-XL/2-3T and SiT-XL/2 to different
number of sampling steps including 250, 100, 150, 100, 50
SDE steps.

gories, including Single Object, Two Object, and Count-
ing, indicating better handling of object complexity
and quantity. DeepFlow also achieves higher scores
in color-related tasks (Colors and Color Attributes)
and positioning, demonstrating more accurate object
placement and color fidelity. Moreover, incorporating
SSL alignment (e.g., DINOv2) benefits both models
but consistently maintains DeepFlow ’s performance
advantage.

A.6. Additional Qualitative Results

In this section, we provide an extensive qualitative
analysis guided by the following criterion: (i) Supple-
mentary to Figure 4 in the main paper: Can DeepFlow
generate high-quality samples even when trained for sub-
stantially fewer epochs? This question is addressed in
Figures 4 and 5, which visualize samples generated by
SiT-XL/2 [11] and DeepFlow-XL/2-3T trained across
varying epochs. We observe that DeepFlow-XL/2-3T
not only yields highly promising results at just 80 epochs
but also demonstrates stable convergence in subsequent
epochs. (ii) Can DeepFlow further enhance its gen-
eration capability by leveraging classifier-free guidance
(CFG) [6]? We demonstrate the visual effectiveness of



DeepFlow-XL/2-3T with CFG by sampling 256×256
images at a CFG scale of 4.0, as illustrated in Fig-
ures 6 to 8. Moreover, we show that the generative
performance can be further improved by integrating
SSL alignment [16], as shown in Figures 9 to 11. Fi-
nally, DeepFlow-XL/2-3T successfully synthesizes high-
resolution images (512×512) of superior quality, as
demonstrated in Figures 12 to 15. (iii) Can Deep-
Flow achieve superior text-to-image generation quality
compared to SiT [11]? Figure 16 visually compares
samples generated by MMDiT [3] trained with the SiT
objective against those produced by DeepFlow, using
identical text prompts. Notably, DeepFlow generates
more realistic images that also exhibit higher fidelity to
the provided textual descriptions.

A.7. Datasets and Metrics

The datasets we used for training and evaluating
DeepFlow are described as follows:

ImageNet-1K: We train and evaluate DeepFlow on
ImageNet-1K dataset for class-conditional generation
benchmark. This dataset spans 1000 object classes and
contains 1,281,167 training images, 50,000 validation
images and 100,000 test images. The generation results
are evaluated with generation FID using pre-computed
statistics and scripts from ADM [1].

License: https://image-net.org/accessagreement

URL: https://www.image-net.org/

MS-COCO: We train and evaluate DeepFlow on MS-
COCO dataset for text-to-image generation benchmark.
This dataset contains 82,783 images for training, 40,504
images for validation. The generation results are evalu-
ated with generation FID and FDDINOv2 [15].

License: https://cocodataset.org/termsofuse

URL: https://cocodataset.org

GenEval: Baselines and DeepFlow trained on MS-
COCO for text-to-image generation are further evalu-
ated on GenEval dataset [4]. It consists of 553 prompts
with four images generated per prompt. Generated
samples are evaluated according to various criteria (e.g.,
Single object, Two object, Counting, Colors, Position,
Color attribute).

FID vs. FDDINOv2 We carefully select evaluation
metrics tailored to each benchmark. For the ImageNet
benchmark, we use the FID score because the inception
model employed for FID was pre-trained on ImageNet,
making it a suitable measure for this dataset. Con-
versely, for the MS-COCO benchmark, which has a
distribution different from ImageNet, we also report
FDDINOv2 [15]. This metric leverages a DINOv2 model
pretrained on a more diverse dataset, ensuring a more

appropriate evaluation for MS-COCO dataset.

A.8. Discussion & Limitations

While the proposed DeepFlow demonstrates impres-
sive performance and training efficiency in image gen-
eration tasks, there remains ample scope for further
optimization in future work. First, although our text-
to-image results are promising compared to previous
flow-based models under fair settings, DeepFlow still
underperforms state-of-the-art models (e.g ., [7, 3, 13]).
Training DeepFlow on large-scale datasets could be a
fruitful direction to improve its performance. Second,
exploring deeper theoretical insights into DeepFlow
would provide a more thorough validation of our ap-
proach. We anticipate that our DeepFlow will serve as
a general framework for flow-based generative model
with this further improvement.

https://image-net.org/accessagreement
https://www.image-net.org/
https://cocodataset.org/#termsofuse
https://cocodataset.org/#home
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Figure 4. Qualitative Comparisons with Baseline in Different Epochs (1).
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Figure 5. Qualitative Comparisons with Baseline in Different Epochs (2).



Figure 6.
Uncurated 256×256 DeepFlow-XL/2-3T Samples (1). Classifier-free guidance scale = 4.0.
(Left): Class = “white shark” (2)
(Right): Class = “cock” (7)



Figure 7.
Uncurated 256×256 DeepFlow-XL/2-3T Samples (2). Classifier-free guidance scale = 4.0.
(Left): Class = “snowbird” (13)
(Right): Class = “box turtle” (37)



Figure 8.
Uncurated 256×256 DeepFlow-XL/2-3T Samples (3). Classifier-free guidance scale = 4.0.
(Left): Class = “Chihuahua” (151)
(Right): Class = “koala” (105)



Figure 9.
Uncurated 256×256 DeepFlow-XL/2-3T+SSL align [16] Samples (1). Classifier-free guidance scale = 4.0.
(Left): Class = “Siberian husky” (250)
(Right): Class = “tree frog” (31)



Figure 10.
Uncurated 256×256 DeepFlow-XL/2-3T+SSL align [16] Samples (2). Classifier-free guidance scale = 4.0.
(Left): Class = “lion” (291)
(Right): Class = “cheeseburger” (933)



Figure 11.
Uncurated 256×256 DeepFlow-XL/2-3T+SSL align [16] Samples (3). Classifier-free guidance scale = 4.0.
(Left): Class = “great grey owl” (24)
(Right): Class = “umbrella” (879)



Figure 12.
Uncurated 512×512 DeepFlow-XL/2-3T Samples (1). Classifier-free guidance scale = 4.0.
(Left): Class = “Persian cat” (283)
(Right): Class = “wood rabbit” (330)



Figure 13.
Uncurated 512×512 DeepFlow-XL/2-3T Samples (2). Classifier-free guidance scale = 4.0.
(Left): Class = “zebra” (340)
(Right): Class = “gorilla” (366)



Figure 14.
Uncurated 512×512 DeepFlow-XL/2-3T+SSL align [16] Samples (1). Classifier-free guidance scale = 4.0.
(Left): Class = “giant panda” (388)
(Right): Class = “hourglass” (604)



Figure 15.
Uncurated 512×512 DeepFlow-XL/2-3T+SSL align [16] Samples (2). Classifier-free guidance scale = 4.0.
(Left): Class = “park bench” (703)
(Right): Class = “volcano” (980)



“A close up of a pizza
and a drink on a table.”

MMDiT (SiT)

DeepFlow

“A dark table has a large 
arrangement of food.”

“A horse that is leaning
over a wooden fence.”

“A park bench 
on the side of a lake.”

DeepFlow

“A vase of flowers one being 
a large sunflower in front of 

a brick wall.”

“A very pretty bright 
colored train on the tracks.”

MMDiT (SiT)

Figure 16. Text-to-Image Generation Results.
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