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A. Editing Real Images
A.1. Rectified flows
All multimodal diffusion transformers (MM-DiT) models
discussed in our paper use the setting of Rectified flows [35]
for noise scheduling and sampling. Rectified flow presents
an approach to learn ordinary differential equation (ODE)
for transporting between two distributions π0 and π1(image
distribution and standard Gaussian, respectively). The key
idea is to learn an ODE that follows straight paths connect-
ing points drawn from X0 ∼ π0 and X1 ∼ π1 as closely as
possible, formulated as follows.

Xt = (1− t)X0 + tX1, t ∈ [0, 1] (A1)

dZt = vt(Zt)dt, (A2)

vt(x) = E
[
Ẋt

∣∣∣Xt = x
]
= E [X1 −X0|Xt = x] , (A3)

Ẋt denotes the time differential of Xt. Eq. (A1) defines the
marginal density at time t, corresponding to noise schedul-
ing in diffusion models. Eq. (A2) and Eq. (A3) explain the
flow connecting each sample Z0 ← π0 and Z1 ← π1.

vt(x;ϕ) is optimized and evaluated using a neural net-
work through the tractable conditional flow matching ob-
jective, where ϕ represents the trainable parameters of the
model.

LCFM(ϕ) := Et,Xt,X1

[
∥vt(Xt|X1)− vt(Xt;ϕ)∥22

]
,

where t ∼ U [0, 1], Xt ∼ pt(·|X1), X1 ∼ π1.
(A4)

vt(x|X1) =
X1 − x

1− t
, vt(x|X0) =

x−X0

t
, (A5)

Eq. (A5), derived from Eq. (A1) and Eq. (A3), shows that
the conditional flow follows a straight line to its destination.

A.2. RF inversion
Rout et al. [56] proposed a novel inversion framework for
RF models that address inversion and editing tasks. Inver-
sion is achieved by following a controlled forward ordinary
differential equation (ODE), establishing a mapping from
the real image distribution π0 to the standard Gaussian dis-
tribution π1 for the recovery of a noisy latent representation

from a given real image. Conversely, the controlled reverse
ODE enables editing by starting with a sample from π1 and
mapping it back to π0, where additional guidance can be
applied using target prompts.

The controlled forward ODE maps real image samples
from π0 to standard Gaussian π1 as t progresses from 0 to
1. Let x1 ← π1 denote a sample from the standard Gaus-
sian distribution, which serves as a regulation point for in-
version. The controlled forward vector field v̂t is defined
as:

v̂t(Xt) = vt(Xt) + γ
(
vt(Xt | x1)− vt(Xt)

)
, t ∈ [0, 1].

(A6)

vt(Xt) = v
(
Xt, t,Φ(“”);ϕ

)
, (A7)

vt(Xt | x1) =
x1 −Xt

1− t
, (A8)

The controlled vector field v̂t is constructed as a
weighted interpolation between the unconditional vector
field vt(·) with the null prompt guidance through text en-
coder Φ, and the conditional vector field vt(· | x1), which
guides the latent variable toward x1 to align better the tar-
get distribution π1. Hyperparameter γ controls the degree
of interpolation between these two fields.

The controlled reverse ODE maps a sample from π1

back to π0, with t progressing from 1 to 0, effectively re-
versing the forward process. Solving this ODE enables re-
construction and editing, with the latter guided by a target
prompt. The controlled vector field v̂t for reverse transfor-
mation is defined as:

v̂t(Xt) = vt(Xt) + η
(
vt(Xt | x0)− vt(Xt)

)
, t ∈ [0, 1].

(A9)

vt(Xt) = v
(
Xt, t,Φ(target prompt);ϕ

)
, (A10)

vt(Xt | x0) =
Xt − x0

t
, (A11)

The formulation is similar to Eq. (A6), expressed as
a weighted combination of the unconditional vector field
vt(·) with target prompt guidance, and the conditional vec-
tor field vt(· | x0), which incorporates the reference image
x0 to align the output with the original real image. The
interpolation between these fields is governed by the hyper-
parameter η. Please refer to [56] for a detailed theoretical
derivation.



A.3. Qualitative comparison with other methods
As discussed in Sec. 5, our method can be effectively com-
bined with inversion techniques. We first obtain the initial
latent through inversion or sampling from a Gaussian distri-
bution. We then define a conditional interpolation path be-
tween this initial latent and the image latent using Eq. (A1),
which we treat as the source branch. During denoising, we
simultaneously evaluate the model using both the source
and target branches, replacing the target branch’s input pro-
jections with those derived from the source branch. Note
that the source branch outputs are solely employed to ob-
tain the qi and ki projections required to update the target
branch. The remaining outputs from the source branch are
disregarded, as the interpolation path between the initial la-
tent and source image latent is already theoretically defined.

We provide qualitative comparisons in Fig. A1, against
several baseline methods: (1) SDEdit [41] based on SD1,
(2) SDEdit based on Flux.1-dev, (3) Null-text inversion
(NTI) [42] with Prompt-to-Prompt [19] based on SD1, and
(4) RF inversion [56], along with our results both with and
without RF inversion. For implementation, we used com-
munity implementations for SDEdit variants and RF inver-
sion and the official implementation for NTI+P2P. SD1-
based methods were experimented with default settings (50
timesteps at 512× 512 resolution), while Flux.1-dev-based
methods used 28 timesteps and 1024× 1024 resolution. As
mentioned in Sec. 4.1, original P2P only allows changes
with the same word counts, and it does not support chang-
ing words like ‘Cappadocia’ to ‘Niagara Falls’ due to dif-
ferent word counts. To address this limitation, we manually
modified some prompts for NTI+P2P by removing spaces
between words (i.e., ‘NiagaraFalls’). All baseline hyperpa-
rameters were empirically optimized.

In general, SD1-based methods occasionally show lim-
itations in output quality due to the base model’s capac-
ity. Compared to SDEdit (Flux.1) and RF inversion, our
method enables larger changes while naturally preserving
unmodified regions. When our approach is applied with-
out inversion, results become more sensitive to the local
blending threshold (θ), requiring higher thresholds to ef-
fectively maintain targeted regions due to divergence in the
denoising sequence. In contrast, starting from optimized
inverted latents inherently preserves source image charac-
teristics, making results less sensitive to threshold values,
as lower thresholds are already sufficient.

A.4. Quantitative comparison with other methods
We evaluate our method on PIE-Bench [27], a benchmark
for prompt-based image editing consisting of 700 samples.
To maximize the model’s performance, we compare Flux.1
and SD 1.4-based methods at their native resolutions of
1024 and 512, respectively. Our inversion-free method re-
quires careful local blending threshold θ control, so we only

perform experiments with inverted latents using RF inver-
sion and fixed blending threshold. As seen in Tab. A1, our
approach improves upon RF inversion with increased con-
trollability via θ. While lowering θ enables broader edits,
selecting an appropriate θ allows our method to improve
RF inversion in both edit quality and image preservation.

Overall, we observed that Flux-based methods effec-
tively reflect the desired edit prompts but demonstrate rela-
tively weaker identity preservation than SD 1-based meth-
ods. We identify two main reasons behind this:

1) Inversion method: RF inversion employs first-
order Euler methods using a controlled vector field de-
rived through dynamic optimal control, interpolating be-
tween two vector fields: an unconditional vector field guid-
ing images to noise, and a controlled vector field that en-
sures the inverted latent to be closer to a “typical” latent
of Flux’s latent distribution. While RF inversion performs
reasonably well, starting from better inverted latents could
potentially yield higher scores. As can be seen with the SD1
case, changing the inversion method from first-order DDIM
to more advanced PnP inversion improves scores through-
out. Additionally, RF inversion utilizes a controlled interpo-
lation mechanism explicitly designed to guide inverted la-
tents toward Flux’s distribution of clean images, sometimes
producing reconstruction that appear perceptually sharper
or cleaner than the source images, paradoxically leading to
lower reconstruction metrics such as PSNR and LPIPS.

2) Dataset characteristics: PIE-Bench, proposed
by [27], was mostly developed within SD1’s capabilities,
involving relatively simpler and slightly noisy images at
SD1’s favorable 512 × 512 resolution. When running at
Flux.1’s native 1024×1024 resolution, the refinement effect
often adversely affects identity preservation metrics. Addi-
tionally, the benchmark contains relatively fewer examples
that can properly evaluate MM-DiT’s complex and precise
control capabilities, such as editing text.

PnP [27] achieved strong performance through extensive
grid searches for optimal hyperparameters. In contrast, RF
inversion performs reasonably well using only first-order
Euler steps and controlled interpolation, without thorough
hyperparameter tuning. Our visual inspection on edited im-
ages revealed many high-quality results with RF inversion,
and our method enhances them with additional controlla-
bility. As existing benchmarks tend to use simpler scenes
(mostly fitted to SD1), we believe evaluating larger models
on more complex scenes and tasks (e.g., text rendering, or
high-resolution broader edits) remains an important direc-
tion.
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Figure A1. Qualitative comparison of real image editing methods. We evaluate using diverse real images from Pexels and Pixabay, with
their initial captions generated by LLM [45] and subsequently modified for editing tasks. Best viewed zoomed in.



Table A1. Comparison of diverse image editing methods in PIE-Bench [27]. Best results are in bold and second best are underlined, ranked
separately for SD 1.4 and Flux.1-dev methods.

Method Model / Steps
Structure Background Preservation CLIP Similarity

Distance ↓ PSNR ↑ LPIPS ↓ MSE ↓ SSIM ↑ Whole ↑ Edited ↑

InstructPix2Pix [3] SD 1.4 / 50 steps 0.057 20.85 0.158 0.0227 0.768 23.90 21.74
InstructDiffusion [17] SD 1.4 / 50 steps 0.075 20.31 0.155 0.0349 0.761 23.46 21.38
P2P (DDIM-Inv) [19] SD 1.4 / 50 steps 0.070 17.88 0.208 0.0219 0.717 25.31 22.57
Pix2PixZero (DDIM-Inv) [46] SD 1.4 / 50 steps 0.062 20.46 0.172 0.0144 0.753 23.07 20.64
MasaCtrl (DDIM-Inv) [4] SD 1.4 / 50 steps 0.027 22.19 0.106 0.0087 0.803 24.23 21.25
P2P (PnP-Inv) [27] SD 1.4 / 50 steps 0.011 27.28 0.054 0.0032 0.853 25.34 22.17
Pix2PixZero (PnP-Inv) [27] SD 1.4 / 50 steps 0.050 21.56 0.138 0.0127 0.777 23.64 21.15
MasaCtrl (PnP-Inv) [27] SD 1.4 / 50 steps 0.024 22.66 0.087 0.0081 0.819 24.70 21.45

RF inversion [56] Flux.1-dev / 28 steps 0.026 23.73 0.144 0.0065 0.769 24.56 21.59
Ours (θ=0.2, RF-inv) Flux.1-dev / 28 steps 0.054 19.92 0.204 0.0174 0.731 25.43 22.56
Ours (θ=0.5, RF-inv) Flux.1-dev / 28 steps 0.025 24.79 0.126 0.0059 0.804 24.62 21.61
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Figure A2. Analyzing attention map components by replacing different portions from a source prompt (“a photo-realistic bear dancing in
the mountain”) to an empty target prompt (“”). Results show I2I portions primarily preserve spatial layout and geometry, with T2T adding
the most negligible impact. Full attention map replacement produces the closest match to source image.

B. Block-wise Attention Patterns

B.1. Additional discussions on I2I & T2T blocks

As mentioned in the main paper, the I2I block is anal-
ogous to self-attention in U-Net architectures, effectively
capturing spatial layout and geometric information. In con-
trast, T2T blocks primarily manifest as identity matrices,
indicating strong self-correlation among tokens. To vali-
date the relative importance of these sub-blocks, we con-
ducted experiments injecting attention maps from meaning-
ful prompts into the empty prompt (“”) branches (Fig. A2).
While full attention map transfer produced the closest repli-
cation of source images, we found that the I2I block alone
sufficiently preserves geometric structure, whereas T2T has
minimal impact.

To further investigate T2T blocks, we visualize their at-
tention patterns using the prompt “a panda riding a bicycle
on the beach under blue sky” in Fig. A18. For the SD3-M

variant, which utilizes 333 tokens (77 CLIP + 256 T5), we
observe pronounced attention signals around special tokens,
particularly at sequence boundaries such as start/end tokens
and transitions from CLIP to T5 embeddings. Similarly,
Flux.1-dev, which employs 512 T5 tokens exclusively, also
exhibits notable attention at prompt endings, with attention
weights substantially decreasing after meaningful tokens
(e.g., EOS). These patterns suggest a focused allocation
of attention toward semantically relevant token boundaries.
Additional subtle and noisy patterns within T2T blocks re-
quire further exploration, which we defer to future work due
to T2T blocks’ minimal impact on current editing scenarios.

B.2. Additional discussions on T2I & I2T blocks

We begin by visualizing the T2I and I2T portions of atten-
tion maps across several model variants (SD3-M: Fig. A14,
SD3.5-M: Fig. A15, SD3.5-L: Fig. A16, Flux.1: Fig. A17).
As discussed in the main paper, we observe spatially and
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Figure A3. Visualization of T2I attention maps separated by text encoder type. For SD3 variants using both CLIP and T5 embeddings, we
visualize attention patterns from CLIP tokens, T5 tokens, and their combination by tracking respective token positions.

geometrically aligned visual patterns when we visualize at-
tention patterns between image tokens and specific text to-
kens. This alignment indicates that each domain preserves
its distinct characteristics even within the multimodal full
attention mechanism. Notably, this phenomenon persists
in Flux.1’s single-branch blocks, where a unified set of
weights processes concatenated tokens. This observation
suggests that the architectural choice between dual and sin-
gle branches does not largely compromise the model’s abil-
ity to maintain domain-specific features. It is also worth
noting that certain blocks produce extremely noisy attention
maps, which validates our strategy of utilizing only selected
well-defined blocks for local blending to achieve more pre-
cise local edits.

B.3. Comparing CLIP and T5 text encoders

Another notable aspect is the use of T5 text encoders along-
side CLIP text encoders in SD3 series. As shown in Tab. 1,
all Stable Diffusion 3 series models we tested (SD3-M,
SD3.5-M, SD3.5-L) utilize three text encoders for the text
branch in MM-DiT, concatenating two CLIP text embed-
dings with T5 text embeddings along the sequence dimen-
sion, whereas Flux.1 exclusively uses T5 for the text branch
and utilizes CLIP features only as pooled embeddings for
scale and shift operations. In Fig. A3, we visualize CLIP
and T5 attention patterns separately. CLIP text encoders
generally produce denser, more localized attention patterns
focused on specific regions. In contrast, T5 encoder gen-
erates more spread-out attention patterns that appear more
contextual, sometimes extending to related concepts (e.g.,
“blue sky” attention spreading to ocean regions due to
shared blue attributes). In SD3 / 3.5 architectures, we natu-
rally utilize attention maps from both CLIP and T5 text to-
ken positions when aggregating T2I blocks to generate local
blending masks.

B.4. Detailed explanation of token misalignment

In Sec. 4.1, we discussed how changing the entire atten-
tion map can lead to misalignment with the value matrix.
Here, we explain this using the example prompt “a panda
riding a bicycle on the beach under blue sky”. The CLIP to-
kenizer produces [‘a’, ‘panda’, ‘riding’, ‘a’, ‘bicycle’, ‘on’,
‘the’, ‘beach’, ‘under’, ‘blue’, ‘sky’], while the T5 tok-
enizer yields [‘’, ‘a’, ‘pan’, ‘d’, ‘a’, ‘riding’, ‘’, ‘a’, ‘bi-
cycle’, ‘on’, ‘the’, ‘beach’, ‘under’, ‘blue’, ‘sky’]. When
editing with a similar prompt “a dragon riding a bicycle on
the beach under blue sky”, CLIP tokenization simply re-
quires mapping ‘panda’ to ‘dragon’ as they are both single
tokens. However, in T5, we need to create a mapper that
maps all three tokens (‘pan’, ‘d’, ‘a’) to a single ‘dragon’
token. While P2P handles such cases by defining explicit
token mappings, this approach becomes challenging with
drastically different prompts like “a princess with a crown
riding an elephant on the beach under blue sky”, where de-
termining appropriate token correspondences is non-trivial.
This limitation becomes more pronounced in larger models
with longer, more descriptive prompts and T5 tokenization.
As shown in Fig. 10, while naive attention map replace-
ment leads to undesired changes due to these token mis-
alignments, our approach of modifying only image tokens
naturally circumvents this limitation by keeping text token
projections intact.

C. In-depth Analysis of Transformer Blocks

C.1. Identifying effective transformer blocks for ob-
taining clearer attention maps

In Sec. 3.3, we presented our analysis of transformer blocks
in Flux.1 to identify those producing clear attention maps
suitable for local blending. Here, we extend this analysis to
additional model architectures: SD3-M (Fig. A4), SD3.5-



Table A2. Top-5 block indices calculated using rankings of BCE
loss, Soft mIoU, and MSE. Results shown with and without Gaus-
sian smoothing across different model variants.

Model w/o Gaussian Smoothing w. Gaussian Smoothing

SD3-M [7, 8, 5, 4, 9] [7, 8, 5, 4, 9]
SD3.5-M [7, 8, 5, 9, 6] [7, 9, 8, 5, 10]
SD3.5-L [18, 16, 29, 21, 14] [18, 21, 20, 24, 16]
Flux.1-dev [11, 50, 18, 13, 10] [18, 17, 12, 14, 11]

Figure A4. Transformer block analysis of SD3-M using Binary
Cross Entropy Loss, Soft mIoU, and MSE, with Grounded SAM2
predictions as ground truth. Scores are shown without (upper) and
with (lower) Gaussian smoothing.

M (Fig. A5), and SD3.5-L (Fig. A6). We evaluate trans-
former blocks for each architecture using three metrics - Bi-
nary Cross Entropy Loss, Soft mIoU, and MSE - both with
and without Gaussian smoothing. The top-5 blocks selected
based on these metrics are summarized in Tab. A2.

As mentioned in the main paper, smaller models (SD3-
M, SD3.5-M) largely maintain their block rankings regard-
less of Gaussian smoothing application. In contrast, larger
models (SD3.5-L and Flux.1-dev) show significant changes
in block rankings after smoothing. This suggests that while
some blocks in larger models appear noisy in their raw
form, they contain valuable structural information that be-
comes apparent after smoothing.

We utilize the T2I portions of the identified top-5 trans-
former blocks for local blending operations. We selec-
tively compute full attention maps only for these 5 blocks
while using PyTorch’s optimized SDPA kernel for all other
blocks. This approach achieves both precise attention con-
trol and computational efficiency. The resulting attention

Figure A5. Transformer block analysis of SD3.5-M using Binary
Cross Entropy Loss, Soft mIoU, and MSE, with Grounded SAM2
predictions as ground truth. Scores are shown without (upper) and
with (lower) Gaussian smoothing.

Figure A6. Transformer block analysis of SD3.5-L using Binary
Cross Entropy Loss, Soft mIoU, and MSE, with Grounded SAM2
predictions as ground truth. Scores are shown without (upper) and
with (lower) Gaussian smoothing.

maps from these selected blocks serve as the foundation for
our local blending mechanism, enabling precise and con-
trolled image editing. Qualitative results with and without
local blending are shown in Fig. A7 for comparison.
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Figure A7. Local blending effects in SD3-M and Flux.1-dev models. The method excels at preserving non-targeted elements: in the
maritime scene, the shoreline, island formations, and cloud patterns remain unchanged; in the classroom scene, the blackboard content and
student arrangements are preserved. Here, we used the previously identified top-5 blocks from each model to generate masks with a local
blending threshold of 0.4, applying the blending up to 50% of total timestep iterations.
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Figure A8. Qualitative results of SD3.5-L-Turbo (left) and Flux.1-schnell (right) demonstrating the impact of replacing block count
(column) on edit strength, showing progression from source image through different block counts to fixed seed (corresponding to block
count 0). Decreasing the number of replaced blocks strengthens the edit effect while reducing structural similarity and style to the source
image. Local blending was not used to better focus on the impact of block replacement.



Figure A9. User study results comparing editing quality across
different methods. Participants evaluated images based on target
prompt alignment and source content preservation. Our method
demonstrates superior balance between achieving desired edits
while maintaining original image characteristics, outperforming
both fixed seed generation (high prompt alignment, poor identity
preservation) and prompt switching (good identity preservation,
weak editing effects).

C.2. Impact of block selections on edit strength

As discussed in Sec. 4.3, the number of replacing blocks can
serve as a hyperparameter to control edit strength. Fig. A8
presents ablation studies on two MM-DiT few-step mod-
els, where we varied the number of replacing blocks from
the initial block. A notable observation is that some gen-
erated images exhibit excessive similarity to the source im-
age, even with one timestep injection of our method, which
constrains the model’s editing capabilities. Given that fur-
ther reduction in timesteps is impossible, we investigated
adjusting the timestep scheduler to mitigate this similarity;
however, this approach also proved ineffective in address-
ing the limitations. In this context, block control emerges as
a particularly effective solution for 4-step distilled models,
SD3.5-L-Turbo and Flux.1-schnell, with the latter showing
a more pronounced effect. Through empirical investigation,
we find that replacing blocks 38 and 30 yields favorable re-
sults for Flux.1-schnell and SD3.5-L-Turbo, respectively.

D. User Study and Additional Qualitative Re-
sults

To address the limitations of LPIPS and CLIP scores in
capturing nuanced edit quality, we conducted a compre-
hensive user study using samples from Tab. 2. The study
evaluated three widely-used models (SD3-M, Flux.1-dev,
and Flux.1-schnell) with at least 30 participants per model
(96 participants total). For fair comparison, all results were
generated using purely qi, ki replacement without manual
per-sample local blending, though it would further enhance
outcomes. Our findings reveal that our method uniquely
balances strong target alignment (akin to direct generation,
which sacrifices preservation contrastingly) with content
preservation (comparable to prompt-change, which how-
ever fails to implement the edit).

Beyond the user study validation, we present extensive
qualitative results (Fig. A11, Fig. A12) from our bench-

Source + raising hands + looking back

S
D

3
-M

Source triangle → circle

F
lu

x
.1

-d
ev

triangle → star

Figure A10. Limitations of our method. As noted in Sec. 7, our
method is unable to achieve identity-preserving non-rigid transfor-
mations like those demonstrated in MasaCtrl [4]. Despite explor-
ing various strategies to effectively modify self-attention related
components, we found it challenging to develop a robust method
that could replicate the capabilities of prior works using U-Net
backbones. Since our method operates by replacing target input
projections with source input projections during early timesteps,
modifying low-level structures that are determined in these stages
can occasionally be challenging, particularly in few cases involv-
ing colors and rough geometric layouts. While manually adjusting
replacing timesteps can mitigate this issue, we leave the develop-
ment of a more systematic solution for future work.

mark experiments discussed in Sec. 6, Tab. 2, and Fig. A9.
These results showcase the robustness of our core approach
across diverse editing scenarios using only input projec-
tion replacement, without hyperparameter tuning for indi-
vidual cases. Additionally, Fig. A13 demonstrates exem-
plary cases where local blending was applied to achieve en-
hanced visual quality and editing precision.

E. Comparison with Other Recent Works

To contextualize our contribution, this section discusses
several recent and concurrent research efforts that have
emerged alongside the effectiveness of modern MM-DiT
architectures and RF formulations. These works often aim
to improve real-image editing by building upon more accu-
rate inversion methods and manipulating internal features.
For instance, RF-Solver [63] uses a Taylor expansion to
derive a more precise ODE solution and reduce inversion
errors. Similarly, FireFlow [13] proposes an efficient few-
step numerical solver that achieves second-order accuracy
at first-order computational cost by reusing intermediate ve-
locities. Both of these works also suggest swapping value
features from the source branch into the target branch’s self-
attention layers to better preserve original content. Other
approaches like FluxSpace [9] define a semantic representa-



tion space from the projected value features post-attention,
and interpolate within this space to add controls. Addition-
ally, StableFlow [2] identifies that not all layers in MM-
DiT contribute equally to image formation and proposes
a method to find a sparse set of “vital layers” crucial for
the output. This concept, while not a direct equivalent, res-
onates with our finding of selecting optimal blocks with less
noisy attention maps.

In contrast to these approaches, our paper’s fundamental
contribution is an architectural analysis of MM-DiT’s at-
tention mechanisms. We explore how principles from prior
models like U-Net can be effectively transferred, leading
to a precise, prompt-based editing method tailored to mod-
ern MM-DiT architectures. This attention-centric analysis
provides unique insights orthogonal to the aforementioned
methods, enabling detailed edits through attention control
that function even without inversion, yet yielding superior
results when paired with techniques like RF inversion as
shown in our experiments.

F. Limitations and Future Directions
Our approach enables precise attention control through op-
timal transformer block selection and targeted input projec-
tion modifications. However, two limitations persist: the
need for empirical parameter tuning in local blending and
the inability to support identity-preserving non-rigid trans-
formations (Fig. A10). Beyond these technical limitations,
we observe promising potential in applying these models to
visual grounding and segmentation tasks, given their abil-
ity to capture abstract attributes transcending conventional
object boundaries. We leave these challenges as potential
directions for future research.

G. Used Prompts
In this section, we provide the list of prompts used to gen-
erate the main paper figures, where they were not explicitly
stated in the text. Relevant codes for reproducing our re-
sults will be open-sourced upon publication. Due to space
constraints, additional prompts used for benchmarking and
supplemental figures will be available in our public reposi-
tory.
Figure 1.
• Source 1: “beautiful oil painting of a steamboat in a river

in the afternoon. On the side of the river is a large brick
building with a sign on top that says ‘SD3”’

• Target 1: “beautiful oil painting of a steamboat in a river
in the afternoon. On the side of the river is a large brick
building with a sign on top that says ‘FLUX”’

• Source 2: “Detailed pen and ink drawing of a happy gi-
raffe butcher selling meat in its shop”

• Target 2: “Detailed pen and ink drawing of a happy
dragon butcher selling meat in its shop”

• Source 3: “A photograph of the inside of a subway train.
There are frogs sitting on the seats. One of them is read-
ing a newspaper. The window shows the river in the back-
ground”

• Target 3: “A photograph of the inside of a subway train.
There are rabbits sitting on the seats. One of them is read-
ing a newspaper. The window shows the river in the back-
ground”

• Source 4: “a guy in the forest with a sword and shield,
fighting a dragon, holding a large sign ‘help me”’

• Target 4: “a guy in the forest with a sword and shield,
fighting a dragon, holding a large sign ‘Please don’t kill
me”’

• Source 5: “A crab made of cheese on a plate”
• Target 5: “A cartoon-style drawing of a crab made of

cheese on a plate”
• Source 6: “translucent pig, inside is a smaller pig”
• Target 6: “translucent whale, inside is a smaller whale”
• Source 7: “A 4K DSLR image of a Hound dog dressed in a

finely tailored houndstooth check suit with bold, oversized
patterns standing on a perfectly manicured grassy field
holding a beautifully crafted banner that says ‘Go Puppy
Team!’ ”

• Target 7: “A 4K DSLR image of a Zebra dressed in
a finely tailored zebra-striped suit with bold, oversized
patterns standing on a perfectly manicured grassy field
holding a beautifully crafted banner that says ‘Go Zebra
Team!’ ”

• Source 8: “A mischievous ferret with a playful grin
squeezes itself into a large glass jar, surrounded by color-
ful candy. The jar sits on a wooden table in a cozy kitchen,
and warm sunlight filters through a nearby window”

• Target 8: “A mischievous lion with a playful grin squeezes
itself into a large glass jar, surrounded by colorful candy.
The jar sits on a wooden table in a cozy kitchen, and warm
sunlight filters through a nearby window”

Figure 3.
• “a panda riding a bicycle on the beach under blue sky”
Figure 4.
• “a photograph of a fiddle next to a basketball on a ping

pong table”
Figure 6.
• “a cute tiger driving a sports car under starry night with

blue moon in new york”
Figure 8.
• Source: “a drawing of a series of musical notes wrapped

around the Earth”
• Target: “a drawing of a series of musical notes wrapped

around the Moon”
Figure 10.
• Source: “a panda riding a bicycle on the beach under

blue sky”
• Target 1: “a princess with a crown riding an elephant on



the beach under blue sky”
• Target 2: “a squirrel with a baseball cap riding a blue

motorbike on the beach under blue sky”
• Target 3: “a cute hamburger with fried chicken legs riding

a green motorbike in the grand canyon under blue sky”
Figure 11.
• Source: “A whimsical scene featuring a playful hybrid

creature: a hippopotamus with golden, crispy waffle-
textured skin, lounging in a surreal habitat blending wa-
ter and breakfast elements like giant utensils and plates.”

• Target: “A whimsical scene featuring a playful hybrid
creature: an elephant with golden, crispy waffle-textured
skin, lounging in a surreal habitat blending water and
breakfast elements like giant utensils and plates.”

Figure 12.
• Source 1: “beautiful oil painting of a steamboat in a river

in the afternoon. On the side of the river is a large brick
building with a sign on top that says ‘SD3”’

• Target 1: “beautiful oil painting of a steamboat in a river
in the afternoon. On the side of the river is a large brick
building with a sign on top that says ‘FLUX”’

• Source 2: “a cat sitting on a stairway railing”
• Target 2: “a squirrel sitting on a stairway railing”
Figure 15.
• Source 1: “a grandmother reading a book to her grand-

son and granddaughter”
• Target 1: “a grandmother reading a holographic story-

book to her grandson and granddaughter in a floating
space station”

• Source 2: “three green peppers”
• Target 2: “three red peppers”
• Source 3: “A close-up high-contrast photo of Sydney

Opera House sitting next to Eiffel tower, under a blue
night sky of roiling energy, exploding yellow stars, and
radiating swirls of blue”

• Target 3: “A close-up high-contrast photo of Sydney
Opera House sitting next to Eiffel tower, under a purple
night sky of roiling energy, exploding yellow stars, and
radiating swirls of purple”

• Source 4: “a comic about two cats doing research”
• Target 4: “a comic about two cats doing quantum physics

research in a lab full of glowing experiments”
• Source 5: “a cartoon of a bear birthday party”
• Target 5: “a cartoon of a panda birthday party”
• Source 6: “a cat patting a crystal ball with the number 7

written on it in black marker”
• Target 6: “a cat patting a crystal ball with the number 13

written on it in black marker”



S
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-M

white wall → crumbling ancient wall with ivy growing around it + in a cozy cafe window seat with rain outside black → red

banana → orange + made of rainbow light connecting Earth to the Moon sloth → koala

S
D
3
.5
-M

diplodocus → t-rex Grand Canyon → Niagara Falls + on a rustic wooden bar at sunset

clock → bell + casting rainbow patterns in a dimly lit room cardboard → glass

S
D
3
.5
-L

monster … plasticine → sea monster … modeling clay + that’s raining books instead of leaves cardboard → wooden

cat → squirrel dinosaur → dragon lion → dragon

Figure A11. Additional qualitative results from experiments reported in Tab. 2, demonstrating edits across diverse model variants. All
results shown use only input projection replacements (qi, ki), without local blending operation.
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buffalo → elephants raccoon → fox green → blue

city → castle cruise ship → sailing ship frogs → rabbits

F
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x
.1
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horse → unicorn … a brick wall → bioluminescent … an ancient temple wall at night richly textured oil painting → pencil sketch with watercolor accents

blue → red ‘Grassy Meadow’ → ‘Sunny Meadow’ owl → wolf

F
lu
x
.1
-s
c
h
n
e
ll

green → red white → red donkey → giraffe

Panic → Worry the Earth → the Moon barred → snowy

Figure A12. Additional qualitative results from experiments reported in Tab. 2, demonstrating edits across diverse model variants. All
results shown use only input projection replacements (qi, ki), without local blending operation.



Figure A13. Additional qualitative results of our method, showcasing various editing scenarios: (a) changing ‘orange kitten’ into ‘pink
monkey’, (b) converting ‘a forest fairy’ into ‘an ocean fairy’, (c) modifying text from ‘N, S, and Flux!’ to ‘Source, Target, and Attention!’,
and (d) changing the identity of subjects, such as transforming a ‘grown woman’ into a ‘grown man’.



Generated Image (Left)

Prompt: a cat patting a crystal ball with the number 7 written on it in black marker.

Visualization word: cat

Figure A14. Visualization of T2I (left) and I2T (right) attention maps in SD3-M. Upper rows show per-block attention maps (averaged
across 28 timesteps), while lower rows show per-timestep attention maps (averaged across all blocks). T2I portions generally capture
semantic concepts more effectively, though certain blocks exhibit significant noise. Timestep-wise analysis reveals that image structure
and layout are primarily established in early denoising steps, supporting our approach of attention map replacement during only the first
20% of timesteps to preserve original image characteristics. Best viewed zoomed in.



Generated Image (Left)

Prompt: a cat patting a crystal ball with the number 7 written on it in black marker.

Visualization word: cat

Figure A15. Visualization of T2I (left) and I2T (right) attention maps in SD3.5-M, averaged across timesteps (upper) and across transformer
blocks (lower). The visualization format and observed patterns are mostly consistent with Fig. A14. Best viewed zoomed in.



Generated Image (Left)

Prompt: a cat patting a crystal ball with the number 7 written on it in black marker.

Visualization word: cat

Figure A16. Visualization of T2I (left) and I2T (right) attention maps in SD3.5-L, averaged across timesteps (upper) and across transformer
blocks (lower). The visualization format and observed patterns are mostly consistent with Fig. A14, except that we observe noisier attention
maps. Best viewed zoomed in.



Generated Image (Left)

Prompt: a cat patting a crystal ball with the number 7 written on it in black marker.

Visualization word: cat

Figure A17. Visualization of T2I (left) and I2T (right) attention maps in Flux.1, averaged across timesteps (upper) and across transformer
blocks (lower). The visualization format and observed patterns are mostly consistent with Fig. A14. It is worth noting that even in single-
branch transformers, geometric and spatial patterns are preserved, indicating the preservation of information for each domain. Attention
maps appear noisy in some blocks. Best viewed zoomed in.



Flux.1-dev, T2T : Row-wise Averaged Attention Distribution 

and Full T2T Attention Matrix

SD3-M, T2T: Row-wise Averaged Attention Distribution

and Full T2T Attention Matrix

Figure A18. Visualization of the T2T portion of the attention maps in SD3-M (left) and Flux.1-dev (right). The heatmaps mostly show
diagonal patterns, with stronger signals from special tokens. Above each heatmap, we present row-wise averaged attention values as line
plots to better highlight the relative values among column indices.
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