HazeFlow: Revisit Haze Physical Model as ODE and
Non-Homogeneous Haze Generation for Real-World Dehazing

Supplementary Material

S1. Reflow and Distillation

For a more detailed understanding, we provide illustrations
depicting the Reflow and Distillation processes Fig 6.
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Figure 6. Illustration of (a) Reflow and (b) Distillation in our 3-
stage learning framework.

S1.1. Implementation Details

In Reflow and Distillation phase, We train HazeFlow for
10K iterations on the URHI [31], using Adam [28] opti-
mizer. We use learning rate of 1 x 1079 for Reflow and
5 x 1075 for Distillation. Other details are consistent with
those described in the pretraining phase.

S1.2. Additional Visual Results

For a phase-by-phase comparison, we present visual results
on the RTTS dataset [31] in Fig. 12. During the pretrain-
ing phase, the network focuses primarily on learning to re-
move haze effectively. In the Reflow phase, the network is
trained with pseudo atmospheric light A, enabling it to re-
store appropriate lighting in hazy regions effectively. In the
Distillation phase, as shown in Fig. 12, this stage removes
artifacts and enhances the natural appearance of the results.

S2. Transmission Refinement

We utilize the refined transmission map Trcfined across
multiple stages, including perceptual loss calculation and
sampling during inference, Reflow and Distillation. Specif-
ically, the perceptual loss described in Eq. 13, utilizing the
refined transmission map, can be written as follows:

Lperc(e) = E[D(J> IT + (1 - Trefined)hO(IT7 TDCP))]~

(24)
Similarly, the inference process, as described in Eq. 8, can
be expressed as:

1
Iryoryr = IT+(1*Trefined)ﬁh0(ITaTDCP)' (25

The obtained transmission maps T fineq are also utilized
for sampling pseudo images during the Reflow phase. The
sampling process for the pseudo clean image J and pseudo
atmospheric light A can be expressed as:

J =1 4 (1 = Trefined) - ho(I5°%, Tpep), — (26)
A =I5 = Treginea - ho(IF°*, Toep).- 27)

Also, in Distillation phase, we use refined transmission map
T'efined instead of transmission map obtained by DCP.

Lpistin(¢") =E[D(I7 + (1 — Trefinea)hs(IT, Tpcp),

(28)

- Tr'efi7Led)h¢’(g(IT)7 TDCP))] .
(29)
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The refined transmission map 7. fineq provides a more
accurate estimation of haze density compared to Tpcp. As
aresult, training with 7. f;,.q €nables the model to remove
haze more effectively and accurately.

As shown in Fig. 11, our refined transmission map cap-
tures haze more effectively. DCP struggles to capture haze
in regions with high depth, leaving residual haze in such
areas, and it also fails to effectively remove haze in sky
regions due to its limitations. In contrast, our method ac-
curately captures haze density, enabling effective haze re-
moval not only in high-depth regions but also in sky areas.

S3. MCBM

S3.1. Implementation Details

For a more detailed explanation of MCBM haze generation
process, the overall pipeline is illustrated in Fig. 7. To ob-
tain diverse shapes of non-homogeneous haze density, we
treat the number of iterations n and the strength of the Gaus-
sian filter o as hyperparameters. Specifically, the iteration n
represents the number of times the Markov chain and Brow-
nian motion are performed, and a higher n leads to reduced
non-homogeneity. We randomly select n by multiplying the
total number of pixels by factors of [4, 5, 6]. Additionally,
to create realistic haze density, it is necessary to smooth to
the 2D array generated by the Markov chain and Brown-
ian motion. We apply smoothing using a Gaussian filter,
where the strength o is randomly selected from [15, 25, 35].
Finally, the MCBM haze density is generated through nor-
malization.
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Figure 7. Overall pipeline of MCBM.

S3.2. Additional Visual Results

To demonstrate the effectiveness of our MCBM haze syn-
thesis, we provide additional visual results. For a fair com-
parison, we evaluate both networks without applying our
transmission refinement process on the RTTS [31]. As
shown in Fig. 13, the network trained with our MCBM haze
synthesis produces significantly clearer results. By learning
to capture non-homogeneous haze, the network effectively
removes haze more comprehensively.

S3.3. t-SNE Visualization of MCBM Haze
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Figure 8. Visualization of feature distributions of pretrained net-
work [48] using t-SNE, comparing real hazy images (blue) ob-
tained from NH-HAZE [4], synthesized non-homogeneous hazy
images (green) generated by our MCBM haze density, and synthe-
sized homogeneous hazy images (red).

To verify whether MCBM can closely approximate real-
world hazy images, we provide a visualization using t-SNE.
As shown in Fig. 8, non-homogeneous hazy images gener-
ated by MCBM haze density is much closer to real-world
hazy image in the feature space of VGG networks [48],
compared to homogeneous hazy image. This approach en-
ables a closer approximation to real haze conditions and the
resulting synthetic images facilitate the effective learning of
our dehazing networks for real-world scenarios.

S4. User Study
Method ‘ DAD [46] PSD[12] D4[58] RIDCP[56] CORUN [18] HazeFlow
Scoret ‘ 0.0273 0.0076 0.0440 0.1214 0.1730 0.6267

Table 7. User study result on RTTS and Fattal’s datasets.

To provide a more thorough comparison, we conduct a

user study. In this study, we randomly select 4 images from
Fattal’s dataset and 26 images from the RTTS dataset. Par-
ticipants are asked to evaluate the results based on three cri-
teria: (1) the completeness of haze removal, (2) the absence
of artifacts, and (3) the quality of color restoration. They
then chose best performing image from the results of our
method and those of the state-of-the-art models. The study
involved 5 image processing experts and 17 non-expert par-
ticipants. As shown in Tab. 7, our method received the ma-
jority of votes, with a significant margin over the second-
ranked model. This result demonstrates that our HazeFlow
effectively removes haze, even according to human percep-
tion.

SS. Discussion on Estimation Steps
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Figure 9. Variation in metrics based on the number of estimation
steps.

HazeFlow can predict results using multiple estimation
steps, similar to other RF-based models [35, 53, 66]. This
section explains the impact of the number of estimation
steps on the results. For thorough evaluation, we use four
metrics: FADE [13] and BRISQUE [40] assess how well the
predicted image has been dehazed and how close it is to the
natural image, while PAQ2PIQ [59] evaluates the percep-
tual quality of the predicted images. As shown in Fig. 9, as
the number of steps increases, FADE and BRISQUE scores
degrade, while PAQ2PIQ scores improve. This indicates
that there is a trade-off between the degree of dehazing and
the perceptual quality in the predicted image. Although in-
creasing the number of estimation steps may enhance per-
ceptual quality, this study focuses on achieving effective
dehazing while minimizing computational cost. Conse-
quently, one-step estimation is chosen as the final approach.
Predicted images for different estimation steps can be seen
in Fig. 10.
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Figure 10. Visualization of results with varying numbers of esti-
mation steps.

S6. Comparison with Rectified Flow

In this section, we demonstrate that the ASM-based ODE
outperforms the naive ODE derived from linear interpola-
tion by comparing it with the baseline, RF [35]. To train
RF, we assume the hazy distribution as X and the clean
distribution as X7 in Sec. 3.1. For a fair comparison, Re-
flow and Distillation are conducted as Eq. (17) and Eq. (19)
using one-step estimation. We provide a quantitative com-
parison in Tab. 8, which shows that HazeFlow outperforms
RF in both dehazing capability and perceptual quality. Ad-
ditionally, a visual comparison is provided in Fig. 14.

Method | FADE, BRISQUE| PAQ2PIQt MUSIQt
Rectified Flow | 1.059 32.21 69.81 54.16
HazeFlow | 0.583 5.01 72.97 63.94

Table 8. Quantitative comparison between RF [35] and our Haze-
Flow.

S7. Other Transmission Estimation Methods

Although DCP [22] is used to approximate transmission
map in our method, various alternative transmission estima-
tion methods can also be employed. Tab. 9 compares differ-
ent transmission estimation methods including DCP [22],
the prior-based method Non-Local [6] and the model-based
method DCPDN [61]. We selected DCP due to its high
FADE score to enhance dehazing quality, but other meth-
ods can be chosen depending on the objective. Note that
selecting the initial transmission map offers flexibility and
the potential for further performance improvements through
alternative approaches.

Method FADE| BRISQUE| NIMAT PAQ2PIQT
DCP [22] 0.583 5.01 530 72.97
DCPDN [61] | 0.713 4.94 5.19 71.95
Non-local [6] | 0.734 1.38 5.16 73.11

Table 9. Ablation on different transmission estimation methods.

S8. Additional Quantitative Results in paired
datasets.

We also conduct a comparison without additional training
on paired datasets. As shown in Tab. 10, HazeFlow achieves
the best performance in both PSNR and SSIM across all
datasets except Dense-HAZE. HazeFlow achieves improve-
ments of 0.43 dB in PSNR on O-HAZE and 0.05 in SSIM
on NH-HAZE compared to the second-best methods, in-
dicating a significant boost in reconstruction fidelity and
structural accuracy. Also, on Dense-HAZE, our method
achieves the highest SSIM score while maintaining a com-
parable PSNR, whereas DAD falls short in SSIM. These
results indicates that our approach not only outperforms ex-
isting methods but also produces superior perceptual quality
with fewer artifacts and sharper details.

S9. Additional Visual Results with SOTA

For a comprehensive comparison with other models, we
provide additional visual comparison on RTTS [31] in
Fig. 15 and Fattal’s dataset [19] in Fig. 16. These fig-
ures demonstrate that HazeFlow removes haze more effec-
tively and reduces artifacts better compared to other mod-
els. Notably, HazeFlow uniquely preserves structural de-
tails in heavily obscured distant regions (e.g., buildings,
trees), where competing methods fail to recover fine edges.
Furthermore, we provide additional comparisons for paired
datasets. Visual results for NH-HAZE can be found in
Fig.17, and Dense-HAZE in Fig.18. These results high-
light that HazeFlow removes deeper haze and significantly
reduces artifacts compared to other models.



‘ NH-HAZE [4] Dense-HAZE [3] I-HAZE [1] O-HAZE [2]

Method

| PSNRT  SSIM? | PSNRT  SSIM?T | PSNRT  SSIM{ | PSNRT  SSIM?T
DAD [46] 1434 0.56 13.51 0.46 18.02  0.80 1836  0.75
PSD [12] 10.62  0.52 9.74 0.43 1379 0.74 11.66  0.68
D4 [58] 12.67 0.50 1150 045 1564  0.73 1696  0.72

RIDCP [56] 12.32 0.53 9.85 0.45 16.88 0.78 16.52 0.72
CORUN [18] | 11.87 0.56 9.47 0.52 17.14 0.83 18.20 0.83

HazeFlow | 1449 061 | 1139 056 | 1837 083 | 1879  0.84

Table 10. Quantitative results on paired dataset (NH-HAZE [4], Dense-HAZE [3], -HAZE [1],0-HAZE [2]). Best results are bolded.
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Figure 11. Visual comparison between results with Tpcp and with Th.cfineq on the RTTS dataset [31].
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Figure 12. Visual comparison between the three phases of our method on the RTTS dataset [31].
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Figure 13. Visual comparison of the results from networks trained with and without MCBM haze on the RTTS dataset [31].
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Figure 14. Visual comparison between Rectified Flow [35] and HazeFlow (Ours) on RTTS dataset [31].
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Figure 15. Additional visual comparison on RTTS dataset [31]
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Figure 17. Additional visual comparison on NH-HAZE dataset [4].
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Figure 18. Additional visual comparison on Dense-HAZE dataset [3].
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