
Registration beyond Points: General Affine Subspace
Alignment via Geodesic Distance on Grassmann Manifold

Supplementary Material

7. Proof of Theorems
7.1. Proof of Theorem 1
Proof. We need to show that f satisfies the following two properties of the group action.

1.∀X ∈ Gr(k, n), I ·X = X (Identity)

2.∀(X ∈ Gr(k, n), T1,T2 ∈ SE(n)), (T1T2) ·X = T1 · (T2 ·X) (Compatibility)

1. For the identity matrix I, it is straightforward that I ·X = X, as the rotation matrix is the identity, and the translation is
the zero vector:

I · (A+ b) = (I ·A) + (Ib+ I(I−AA⊤)I⊤0) (16)
= A+ b

2. Given two elements of SE(n), T1 = (R1, t1) and T2 = (R2, t2), T1 · (T2 ·X) is derived by following process:

T2 ·X = (R2 ·A) +R2b+R2(I−AA⊤)R⊤2 t2 (17)

T1 · (T2 ·X) = R1 · (R2 ·A) +R1(R2b+R2(I−AA⊤)R⊤2 t2) +R1(I−R2A(R2A)⊤)R⊤1 t1 (18)

= R1 · (R2 ·A) +R1R2(b+ (I−AA⊤)(R⊤2 t2 +R⊤2 R
⊤
1 t1)) (∵ I = R2R

⊤
2). (19)

= ((R1R2) ·A) +R1R2b+R1R2(I−AA⊤)(R1R2)
⊤(R1t2 + t1) (∵ (R2 ·A) := span{R2A}) (20)

Also, since T1T2 = (R1R2,R1t2 + t1),

(T2T1) ·X = (R1R2) ·A+R1R2b+R1R2(I−AA⊤)(R1R2)
⊤(R1t2 + t1), (21)

which is identical to Eq. (20).

7.2. Proof of Corollary 1.1
Proof. Assume x ∈ Rn is included in affine subspace A+ b. Then, there exists a unique unit vector c satisfying

x = Ac+ b, (22)

which represents a coordinate of the point on the plane. Then, by SE(n) transformation, x moves to

x′ = RAc+Rb+ t. (23)

To demonstrate that x′ is included in T · (A + b), we need to show that the projection of the difference between x′ and
the displacement of T · (A + b) onto the orthogonal complement of R ·A results in the zero vector. This can be proved as
follows:

(I−RAA⊤R⊤)(x′ − b′(R, t)) = (I−RAA⊤R⊤)(RAc+Rb+ t−Rb−R(I−AA⊤)R⊤t)) (24)

= (I−RAA⊤R⊤)RA(c+A⊤R⊤t) (25)
= 0.

7.3. Proof of Theorem 2
Proof. (→) Given two elements of the Grassmannian, A ∈ Gr(k, n) and B ∈ Gr(l, n), where k ≤ l < n are positive
integers, assume that every basis vector of A, denoted as ai (i = 1, · · · , k), is spanned by the basis vectors of B, denoted as
bi (i = 1, · · · , l). In this case, each ai can be represented as:

ai =

l∑
j=1

cijbj (26)

This leads to orthonormal basis representation of A as:

A =
[∑l

j=1 c1jbj · · ·
∑l

j=1 ckjbj

]
=

[
c11b1 · · · ck1b1

]
+ · · ·+

[
c1lbl · · · cklbl

]
. (27)

By multiplying the orthonormal basis matrix of B, which is B =
[
b1 · · · bl

]
, to the A⊤, we obtain following matrix

A⊤B ∈ Rk×l:

A⊤B =

c11 . . . c1l
...

. . .
...

ck1 . . . ckl

 . (28)

Since every ai is an orthonormal matrix, we have the following two conditions:

c2i1 + c2i2 + · · ·+ c2il = 1, (i = 1, . . . , k) (29)
l∑

j=1

cijci′j = 0 (∀i, i′ ∈ {1, . . . , k}, i ̸= i′). (30)

This implies that A⊤B consists of k orthonormal row vectors. Since every singular value of an orthonormal matrix is 1, all
principal angles are equal to zero by Eq. (38), resulting in a Grassmann distance of zero.

(←) Given two elements of the Grassmannian, A ∈ Gr(k, n) and B ∈ Gr(l, n), where k ≤ l < n are positive integers,
assume that the Grassmann distance between them is zero. Then, for every principal vector pair (pi,qi) (i = 1, . . . , k),
the condition pi = qi is satisfied. According to Definition 5, these principal vectors constitute the first k orthonormal basis
vectors of both A and B. Therefore, every basis vector of A is spanned by the basis vectors of B.

7.4. Proof of Problem 2
Given two elements of the affine Grassmannian, A+c ∈ Graff(k, n) and B+d ∈ Graff(l, n), where k ≤ l < n are positive
integers, we need to show that every basis vector of z(A+ c) is spanned by the basis vectors of z(T · (B+ d)) if and only if
the following condition is satisfied:

k∑
i=1

∥PR ·Bai − ai∥22 +
∥∥Pz(T · (B+d))c̃− c̃

∥∥2
2
= 0. (31)

Proof. (→) The orthonormal basis matrix of each embedded subspace is represented as:

Yz(A+c) =

a1 . . . ak
c√

1+∥c∥2

0 . . . 0 1√
1+∥c∥2

 , Yz(T · (B+d)) =

Rb1 . . . Rbl
d′(R,t)√

1+∥d′(R,t)∥2

0 . . . 0 1√
1+∥d′(R,t)∥2

 (32)

Since āi = [a⊤i 0]⊤ is spanned by the columns of Yz(T · (B+d)), we can write:

āi =

l∑
j=1

cijRbj + ci(l+1)d̃
′(R, t). (33)

It is readily shown that ci(l+1) = 0 since the last element of āi is zero. Then, ai is a linear combination of B = [b1 . . .bl],
where cij = a⊤i Rbj due to the orthonormality of RB. Rewrite this with linear combination of c̃:

ai =

l∑
j=1

(a⊤i Rbj)Rbj = PR ·Bai, (34)

c̃ =

l∑
j=1

(c̃⊤Rbj)Rbj + (c̃⊤d̃′(R, t))d̃′(R, t) = Pz(T · (Bd))c̃, (35)

which is identical to the condition Eq. (31) being satisfied.

(←) Starting from Eq. (31) being satisfied, we also derive Eq. (34) and Eq. (35), which implies that every basis of z(A+c)
is spanned by the bases of z(T · (B+ d)).

As a result, to validate whether the bases of another affine subspace span the basis of one affine subspace, we only need
to check if Eq. (31) is satisfied. To formulate the cost function for minimizing the geodesic distance, this condition can be
utilized by defining the left-hand side as a residual. Summing these residuals overN correspondences yields the cost function
for Problem 2.

7.5. Proof of Corollaries
Simply replacing each affine primitive in Problem 2 with 3D lines and planes, as represented in each corollary, provides

the result.

8. Derivation Details
8.1. Grassmann Distance
Inducing the geodesic distance on the Grassmannian requires a principal vector and angle defined as follows [42]:

Definition 4 (Principal Vector). Let A ∈ Gr(k, n), B ∈ Gr(l, n), and k ⩽ l < n be positive integers. Then ith principal
vectors (pi,qi), i = 1, · · · , k, are defined recursively as solutions to the optimization problem:

max (p⊤i qi) subject to

pi ∈ A,p⊤i p1 = · · · = p⊤i pi−1 = 0, ∥pi∥2 = 1,

qi ∈ B,q⊤i q1 = · · · = q⊤i qi−1 = 0, ∥qi∥2 = 1.

(36)

Then, the ith principal angle θi is defined by:
cos θi = p⊤i qi. (37)

Principal angles provide a natural measure for obtaining the closeness between two linear subspaces within Rn, spanned
by columns of matrices [12, 15]. This is due to its recursive definition, which extends the distance between 1-dimensional
linear subspaces—explicitly derived as cosine similarity—to the range spaces of matrices. Derivation of principal angles
requires SVD [5]. Let A and B be two orthonormal basis matrices of A ∈ Gr(k, n) and B ∈ Gr(l, n). Then, the principal
angles are given by:

θi = cos−1 σi, i = 1, · · · , k, (38)

where σi refers to ith singular value of A⊤B. Then, the geodesic distance on two elements of Grassmannian, denoted as
Grassmann distance is defined as follows:

Definition 5 (Grassmann Distance). Let k ⩽ l < n, and θ1, · · · , θk be the principal angles between A ∈ Gr(k, n) and
B ∈ Gr(l, n), then the geodesic distance between A and B is given by:

dGr(A,B) = (

k∑
i=1

θ2i)
1/2. (39)

8.2. Displacement Vectors
Given an affine subspace A+ c ∈ Graff(k, n), the unique displacement c0 of this space is determined as follows:

c0 = (I−AA⊤)c. (40)

This also represents the displacement and is orthogonal to A since:

A⊤c0 = A⊤(I−AA⊤)c = 0, (41)

(I−AA⊤)(c− c0) = (I−AA⊤)(c− (I−AA⊤)c) (42)

= (I−AA⊤)(AA⊤c)

= 0,

where each equation demonstrates the orthogonality of c0 to A and the orthogonality of c−c0 to the orthogonal complement
of A.

8.3. Rotation Search
8.3.1. Line-to-line case
Assume the current rotation cube is Cr with a half-side length of σr and centered at R0. An objective function for this case
is:

max
R∈Cr

N∑
i=1

1(ϵ− dGr(Rdi
1,d

i
2)

2). (43)

We first derive a lower bound for dGr(Rdi
1,d

i
2) for an arbitrary rotation R within the cube Cr using the triangle inequality

of the Grassmann distance:

dGr(Rdi
1,d

i
2) ≥ dGr(R0d

i
1,d

i
2)− dGr(R0d

i
1,Rdi

1). (44)

Then from [40], an upper bound for dGr(R0d
i
1,Rdi

1) is written as:

dGr(R0d
i
1,Rdi

1) ≤ min(
π

2
,
√
3σr). (45)

From Eq. (44) and Eq. (45), an upper bound for the objective function of Eq. (43) is derived as:

max
R∈Cr

N∑
i=1

1
(
ϵ− dGr(Rdi

1,d
i
2)

2
)
≤

N∑
i=1

1

(
ϵ−max

(
0,dGr(R0d

i
1,d

i
2)−min(

π

2
,
√
3σr)

)2
)

(46)

:= ν̄r. (47)

Additionally, a lower bound for the objective function in Eq. (43) is readily derived as:

max
R∈Cr

N∑
i=1

1
(
ϵ− dGr(Rdi

1,d
i
2)

2
)
≥

N∑
i=1

1
(
ϵ− dGr(R0d

i
1,d

i
2)

2
)

(48)

:= νr (49)

8.3.2. Line-to-plane case
An objective function for this case is:

max
R∈Cr

N∑
i=1

1
(
ϵ− dGr(d

i,PR ·Bidi)2
)
. (50)

From the triangle inequality, the lower bound of dGr(d
i,PR ·Bidi) is derived as:

dGr(d
i,PR ·Bidi) ≥ dGr(d

i,PR0 ·Bidi)− dGr(PR0 ·Bidi,PR ·Bidi). (51)

Denote a normal vector of Bi as ni, an acute angle between R0n
i and Rni as θ (it is identical to dGr(R0n

i,Rni)), and a
mid-point of R0n

i and Rni on the arc as Rmni. Then, an upper bound of dGr(PR0 ·Bidi,PR ·Bidi) can only be explicitly
derived under following observation:

if dGr(Rmni,di) ≥ θ

2
→ dGr(PR0 ·Bidi,PR ·Bidi) ≤ dGr(R0n,Rn) ≤ min(

π

2
,
√
3σr). (52)

Extending this observation into Cr, we obtain an upper bound ψr within the cube:

ψr =

{
min(π/2,

√
3σr)

(
dGr(R0n

i,di) ≥
√
3σr

)
π/2

(
dGr(R0n

i,di) <
√
3σr

) (53)

Then, the upper bound of Eq. (50) is derived by substituting ψr into Eq. (51):

max
R∈Cr

N∑
i=1

1
(
ϵ− dGr(d

i,PR ·Bidi)2
)
≤

N∑
i=1

1
(
ϵ−max

(
0,dGr(d

i,PR0Bidi)− ψr

)2)
(54)

:= ν̄r. (55)

A lower bound is derived similarly as line-to-line case, which is:

max
R∈Cr

N∑
i=1

1
(
ϵ− dGr(d

i,PR ·Bidi)2
)
≥

N∑
i=1

1
(
ϵ− dGr(d

i,PR0 ·Bidi)2
)

(56)

:= νr (57)

8.3.3. Plane-to-plane case
The same results can be obtained by substituting the direction vectors di

1 and di
2 with the normal vectors ni

1 and ni
2 from

Sec. 8.3.1.

8.4. Translation Search
8.4.1. Line-to-line case
Assume the current translation cube is Ct, with the center at t0 and vertices denoted as Vt. An objective function for this case
is:

min
t∈Ct

N∑
i=1

∥∥∥Pz(T · li1)b̃
i
2 − b̃i

2

∥∥∥2
2
, (58)

where T = (R∗, t) and Pz(T · li1)b
i
2 =

(
(b̃i

2)
⊤R∗di

1

)
R∗di

1 +
(
(b̃i

2)
⊤b̃

′i
1 (R

∗, t)
)
b̃

′i
1 (R

∗, t). Then, from the triangle

inequality of Euclidean distance, lower bound of
∥∥∥Pz(T · li1)b̃

i
2 − b̃i

2

∥∥∥
2

is:∥∥∥Pz(T · li1)b̃
i
2 − b̃i

2

∥∥∥
2
≥

∥∥∥Pz(T0 · li1)b̃
i
2 − b̃i

2

∥∥∥
2
−
∥∥∥Pz(T0 · li1)b̃

i
2 −Pz(T · li1)b̃

i
2

∥∥∥
2
, (59)

where T0 = (R∗, t0). From its definition,
∥∥∥Pz(T0 · li1)b̃

i
2 −Pz(T · li1)b̃

i
2

∥∥∥
2

can be rewritten as:∥∥∥Pz(T0 · li1)b̃
i
2 −Pz(T · li1)b̃

i
2

∥∥∥
2
=

∥∥∥((b̃i
2)
⊤b̃

′i
1 (R

∗, t0)
)
b̃

′i
1 (R

∗, t0)−
(
(b̃i

2)
⊤b̃

′i
1 (R

∗, t)
)
b̃

′i
1 (R

∗, t)
∥∥∥
2
. (60)

Recall that from Theorem 3:

b
′i
1 (R

∗, t) = R∗bi
1 +R∗(I− dd⊤)R∗⊤t. (61)

Since t ∈ Ct, a set of vectors b
′i
1 (R

∗, t) forms a line segment within R3, where its two end-points are always formulated
from t ∈ Vt. Augmenting the last element with 1 and normalizing to make b̃

′i
1 (R

∗, t), the set is now mapped to an arc on
3-sphere in R4, and the two end-points of the arc v1 and v2 are maintained, which means v1,v2 ∈ b̃

′i
1 (R

∗, t),where t ∈ Vt.

Our objective is to obtain an upper bound of Eq. (60). Observe that each term of the right-hand side is multiplied by(
(b̃i

2)
⊤b̃

′i
1 (R

∗, t0)
)

and
(
(b̃i

2)
⊤b̃

′i
1 (R

∗, t)
)

, respectively. These terms represent an inner product between a stationary

point on 3-sphere b̃i
2 and points on the arc. Starting from v1 and heading to v2, we observe that in every tested case in our

experiments, where the two endpoints are sufficiently close, these inner product values exhibit only four possible shapes:
monotonic increasing, monotonic decreasing, convex, or concave. As a result, we can conclude that Eq. (60) achieves its
maximum at one of the vertices, and its value can be expressed as:

ψt = max
t∈Vt

∥∥∥((b̃i
2)
⊤b̃

′i
1 (R

∗, t0)
)
b̃

′i
1 (R

∗, t0)−
(
(b̃i

2)
⊤b̃

′i
1 (R

∗, t)
)
b̃

′i
1 (R

∗, t)
∥∥∥
2

(62)

Therefore, the lower bound of the objective function is:

min
t∈Ct

N∑
i=1

∥∥∥Pz(T · li1)b̃
i
2 − b̃i

2

∥∥∥2
2
≥

N∑
i=1

(
max(0,

∥∥∥Pz(T0 · li1)b̃
i
2 − b̃i

2

∥∥∥
2
− ψt)

)2

(63)

= et (64)

Also, an upper bound is:

min
t∈Ct

N∑
i=1

∥∥∥Pz(T · li1)b̃
i
2 − b̃i

2

∥∥∥2
2
≤

N∑
i=1

∥∥∥Pz(T0 · li1)b̃
i
2 − b̃i

2

∥∥∥2
2

(65)

= ēt (66)

The process for obtaining the bounds is exactly the same for the case of the line-to-plane and plane-to-plane cases.

8.5. Algorithms
This section introduces the entire pipeline for solving the line-to-line registration problem with our BnB solver. The process
for obtaining solutions in line-to-plane and plane-to-plane registration is analogous; therefore, we omit detailed algorithms
for these cases.

Algorithm 2 Optimal 3D Line Registration
Input:
X = {(dti , bti)}, (i = 1, · · · , N): Target lines
Y = {(dsj , bsj)}, (j = 1, · · · ,M): Source lines
CR: Initial SO(3) cube for rotational BnB
Ct: Initial R3 cube for translational BnB
ϵR, ϵt: Threshold for rotational and translational BnB
Ii: Initial correspondences

Output:
(R∗, t∗): Optimal transformation
If : Resulted correspondences

1: Xlin = {}, Ylin = {}
2: for i = 1 : N do % Definition 3
3: Xlin[i][:, 0]← d̄ti

4: Xlin[i][:, 1]← b̃ti
5: end for
6: for j = 1 : M do % Definition 3
7: Ylin[j][:, 0]← d̄sj

8: Ylin[j][:, 1]← b̃sj
9: end for

10: if Ii is not empty then
11: If , R∗ = CorrRBnB(Xlin, Ylin, Ii, CR, ϵR) % Algorithm 3
12: else
13: If , R∗ = FullRBnB(Xlin, Ylin, CR, ϵR) % Algorithm 4
14: end if
15: t∗ = TBnB(Xlin, Ylin, If , R∗, Ct, ϵt) % Algorithm 5
16: return If , R∗, t∗

Algorithm 3 CorrRBnB: Rotation BnB with correspondences
Input:
Xlin = {(d̄ti , b̃ti)}, (i = 1, · · · , N): Target embeddings
Ylin = {(d̄sj , b̃sj)}, (j = 1, · · · ,M): Source embeddings
CR: Initial SO(3) search cube
ϵR: BnB threshold
Ii: Initial correspondences

Output:
R∗: Optimal rotation
If : Resulted correspondences

1: If ← Ii
2: Add initial cube CR into priority queue QR

3: while If .size < ν̄r do
4: Read cube Cr with the greatest upper bound ν̄r from QR

5: for all sub-cube Cri do
6: Compute the lower bound νri % Eq. (48)
7: if If .size < 2νri then
8: (If , R∗)← LMOptimization(Xlin, Ylin, If , R∗)
9: end if

10: Compute the upper bound ν̄ri % Eq. (46)
11: if If .size < ν̄ri then
12: Add Cri to queue QR

13: end if
14: end for
15: end while
16: return If , R∗

Algorithm 4 FullRBnB: Rotation BnB without correspondences
Input:
Xlin = {(d̄ti , b̃ti)}, (i = 1, · · · , N): Target embeddings
Ylin = {(d̄sj , b̃sj)}, (j = 1, · · · ,M): Source embeddings
CR: Initial SO(3) search cube
ϵR: BnB threshold

Output:
R∗: Optimal rotation
If : Resulted correspondences

1: If = {}
2: Add initial cube CR into priority queue QR

3: while If .size < ν̄r do
4: Read cube Cr with the greatest upper bound ν̄r from QR

5: for all sub-cube Cri do
6: Compute the lower bound νri % Eq. (48)
7: if If .size < 2νri then
8: R∗← LMOptimization(Xlin, Ylin, R∗)
9: end if

10: Compute the upper bound ν̄ri % Eq. (46)
11: if If .size < ν̄ri then
12: Add Cri to queue QR

13: end if
14: end for
15: end while
16: If = FindCorr(Xlin, Ylin, R∗)
17: return If , R∗

Algorithm 5 TBnB: Translation BnB
Input:
Xlin = {(d̄ti , b̃ti)}, (i = 1, · · · , N): Target embeddings
Ylin = {(d̄sj , b̃sj)}, (j = 1, · · · ,M): Source embeddings
Ct: Initial R3 search cube
ϵt: BnB threshold
If : Correspondences

Output:
t∗: Optimal translation

1: Set optimal error e∗ = +∞
2: Add initial cube Ct into priority queue Qt

3: while e∗ − et < ϵt do
4: Read cube Ct with the lowest lower bound et from Qt

5: for all sub-cube Cti do
6: Compute the upper bound ēti % Eq. (65)
7: if ēti < e∗ then
8: (e∗, t∗)← LMOptimization(Xlin, Ylin, If , R∗, t∗, e∗)
9: end if

10: Compute the lower bound eti % Eq. (63)
11: if eti < e∗ then
12: Add Cti to queue Qt

13: end if
14: end for
15: end while
16: return t∗

9. Analysis on Point-based and Parameter-based Methods

9.1. Measurement Variation of Point-based Registration

In this section, we further analyze how the optimal rotation of point-based cost functions varies with changes in point location.
For simplicity, our analysis focuses on 2-dimensional point-to-line registration, considering only rotational transformations
and assuming measurement points lie perfectly on the model shape without any noise. In this case, the optimal rotation will
initially be the identity element. We then examine how the optimal rotation changes as the noise in the points increases.

𝑂

𝑙

𝛼

𝛽

𝑝

𝑹(𝜃)

𝒅

𝒏 𝒗

𝒚

Figure 8. Measurement points on the model with outlier p. This figure illustrates measurement points without noise (blue) lying on the
corresponding model lines. When an outlier p (red), expressed by parameters α and β, is paired with line l, the optimal rotation R(θ) may
adjust to minimize the total point-to-line costs.

A measurement point on the model can be written as:

p = d+ αn+ βv, (67)

where d is the displacement of the paired line with the point, n is the unit-norm displacement (normal vector), α is the noise
in the normal direction, v is the unit-norm direction vector perpendicular to n, and β is the amount of displacement along v.
A rotation in R2 is expressed as an element of SO(2) matrix:

R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
. (68)

Therefore, as illustrated in Fig. 8, a point-to-line distance formulated by p is:

dp =
∣∣n⊤ (R(θ)(d+ αn+ βv)− y)

∣∣ , (69)

where y is the given point on the model. Denoting n = [nx, ny]
⊤, d = [dx, dy]

⊤, ∥d∥ = d, v = [vx, vy]
⊤, this can be

explicitly rewritten as:

dp =
∣∣(nxdx + nydy + α(n2x + n2y) + β(nxvx + nyvy)

)
cos θ + (β(nyvx − nxvy) + dxny − nxdy) sin θ − n⊤y

∣∣ (70)

= |(d+ α) cos θ + β sin θ − d| . (71)

If α = 0, indicating that p lies on the paired line, the minimizer θ of the cost is zero, regardless of the value of β. However,
if α > 0, we observe that absolute value of the minimizer θ decreases as β increases. This aligns with our intuition: a
point farther from the center can be slightly rotated to better fit the line. If such outlier points increase, the optimal rotation
minimizing the sum of Eq. (69) deviates from the identity. In contrast, adding the number of points with smaller β has no
significant effect. This is because substantially increasing θ to align with near outliers would drastically increase the cost
associated with inlier points, making the identity matrix the optimal rotation as before.

9.2. Comparison of Curves on Manifold
From the paper, we observed that the sign ambiguity results in two distinct straight lines in the parameter space, which

leads to suboptimal solutions. In this section, we investigate how these two lines are mapped as curves on the manifold

and compare the lengths of these curves. First, we represent an element of the Grassmannian A ∈ Gr(k, n) using its
unique projection matrix, PA = AA⊤, where A is an orthonormal basis matrix [4]. Then, denoting two tangent vectors at
P ∈ Gr(k, n) as ∆1,∆2 ∈ TPGr(k, n), Riemannian metric at the tagent space is defined as:

gP(∆1,∆2) =
1

2
tr(∆1∆2). (72)

Given two subspaces A,B ∈ Gr(k, n) and Riemannian metric of Eq. (72), minimal geodesic equation γ(t) connecting
two points (γ(0) = PA, γ(1) = PB) is derived as [3]:

γ(t) = etCPAe
−tC, (where e2C = (I− 2PB)(I− 2PA)), (73)

Applying this result for connecting two embeddings of affine subspace A + c,B + d ∈ Graff(k, n), Eq. (73) leads to
γ : [0, 1]→ Gr(k + 1, n+ 1):

γ(t) = etCPz(A+c)e
−tC, (where e2C = (I− 2Pz(B+d))(I− 2Pz(A+c))), (74)

where the length of this geodesic is explicitly given by the root-sum-square of the principal angles between Yz(A+c) and
Yz(B+d).

We now derive the length of the curve mapped from the straight line in the Euclidean parameter space to the manifold.
First, we define the mapping between the two spaces as ϕ(·) : Rm → Gr(k + 1, n + 1), where m is the dimension of the
intermediate space (e.g.,m = 4 for a 3D plane parameter (a, b, c, d)). Then, the mapped curve from the Euclidean embedding
is derived as ϕ(t) := ϕ(v(t)), where v(t) is the straight line on the parameter space connecting two features represented as
v1 and v2:

v(t) = tv2 + (1− t)v1. (75)

Then, the velocity at t = tk is derived by the chain rule:

ϕ̇(tk) = (
∂ϕ

∂v
|v=v(tk)) · v̇(tk) (76)

= (
∂ϕ

∂v
|v=v(tk)) · (v2 − v1). (77)

Since an element of Grassmannian is represented by the projection matrix ϕ(v(t)) ∈ R(n+1)×(n+1), the partial derivative
yields a 3D matrix ∂ϕ

∂v ∈ R(n+1)×(n+1)×m. The notation · in Eq. (76) denotes entry-wise multiplication, where (i, j) entry
of ϕ̇ is:

ϕ̇ij =
∂ϕij
∂v

· (v2 − v1) (78)

Then, the length of the curve is approximated by uniformly discretizing t ∈ [0, 1] into N samples:

l ≈
N−1∑
i=0

√
gϕ(i∆t)(ϕ̇(i∆t), ϕ̇(i∆t))∆t (79)

=

N−1∑
i=0

1√
2
tr(ϕ̇2(i∆t))∆t, where ∆t =

1

N
. (80)

In the case of 2D lines, the embedding is represented by the coordinate v = (a, b, c) from the line equation ax+by+c = 0.
Then, the corresponding projection matrix ϕ(v) ∈ R3×3 in case of (c < 0) is:

ϕ(v) =
1

a2 + b2 + c2

b2 + c2 −ab ac
−ab c2 + a2 bc
ac bc a2 + b2

 . (81)

Then, each entry of velocity is:

ϕ̇11 =
1

(a2 + b2 + c2)2
[
−2a(b2 + c2) 2a2b 2a2c

]
·
[
a2 − a1 b2 − b1 c2 − c1

]⊤
(82)

ϕ̇12 =
1

(a2 + b2 + c2)2
[
−b(b2 + c2 − a2) −a(a2 + c2 − b2) 2abc

]
·
[
a2 − a1 b2 − b1 c2 − c1

]⊤
(83)

ϕ̇13 =
1

(a2 + b2 + c2)2
[
c(b2 + c2 − a2) −2abc a(a2 + b2 − c2)

]
·
[
a2 − a1 b2 − b1 c2 − c1

]⊤
(84)

ϕ̇21 = ϕ̇12 (85)

ϕ̇22 =
1

(a2 + b2 + c2)2
[
2ab2 −2b(a2 + c2) 2b2c

]
·
[
a2 − a1 b2 − b1 c2 − c1

]⊤
(86)

ϕ̇23 =
1

(a2 + b2 + c2)2
[
−2abc c(a2 + c2 − b2) b(a2 + b2 − c2)

]
·
[
a2 − a1 b2 − b1 c2 − c1

]⊤
(87)

ϕ̇31 = ϕ̇13 (88)

ϕ̇32 = ϕ̇23 (89)

ϕ̇33 =
1

(a2 + b2 + c2)2
[
2ac2 2bc2 −2c(a2 + b2)

]
·
[
a2 − a1 b2 − b1 c2 − c1

]⊤
(90)

Initial Line

End Line

x

y

-4 -2 0 2 4 -4 -2 0 2 4
0

1

2

3

4

5

0

1

2

3

4

5

x

y

Figure 9. Comparison of two projected straight lines in parameter space on the manifold. This figure compares two curves connecting
the initial line v1 = (1, 2,−5) and the end line v2 = (1,−3, 5). The left figure illustrates the projected trajectory of the straight line
connecting (v1, −v2), while the right figure depicts the trajectory of the line connecting (v1, v2).

Given two lines x+2y− 5 = 0 and x− 3y+5 = 0 represented by v1 = (1, 2,−5) and v2 = (1,−3, 5), we numerically
obtain the length of two curves which connect (v1,v2) and (v1,−v2). By defining two straight lines c1(t) = tv2+(1− t)v1

and c2(t) = −tv2 + (1− t)v1 on the parameter space, the curve length projected on the manifold is obtained from Eq. (79).
The trajectory of each curve is visualized as Fig. 9. From the results by selecting N = 1000, the lengths of two curves, l1
and l2 are 2.7539 and 0.3876. This parameter-based approach inevitably selects a specific sign, resulting in different cost
terms depending on the selection, as evidenced by their differing lengths. In the case of registering noisy data, this selective
overweighing of a specific term may result in a suboptimal solution. In contrast, our cost function consistently minimizes the
geodesic distance, effectively avoiding this ambiguity.

An interesting result is that, in every test case, one of the two lines consistently yielded the same length as the geodesic
distance, matching to a precision of at least five decimal places and aligning with the trajectory of the geodesic in Eq. (74).
Additionally, the sum of l1 and l2 always equaled π, which is twice the maximum geodesic distance of Gr(2, 3), π/2. From
this observation, we can infer that the projections of the two straight lines on the manifold are smoothly connected and form
a closed geodesic on Gr(2, 3) as illustrated in Fig. 10. Assuming ϕ(v(t)) and Eq. (73) represent identical curves on the
manifold, and factorizing ϕ(v(t)) into the same form may reveal interesting properties of the Grassmann manifold and its
representation as a projection matrix. This could also lead to an explicit representation of a longer geodesic connecting two
points and a closed geodesic equation on the Grassmann manifold.

𝐯𝟏

𝐯𝟐

−𝐯𝟐

𝑐1

𝑐2

𝜙(𝑐1)

Grassmann Manifold

𝜙(𝑐2)

ℝ3

Euclidean Parameter Space

Gr(2,3)

Figure 10. Mapped straight lines on manifold. Two distinct straight lines connecting the features, differing only by the sign of one
parameter, may form a closed geodesic on the Grassmann manifold. Additionally, the projection of the shorter line (blue) may align with
the geodesic equation, while the longer line (red) is mapped to the longer arc.

10. Experiments Details
10.1. Time Complexity Analysis
In this section, we provide a computational time of experiments in Sec. 5. All the reported times represent the average time
required to process a single set. For example, in the object registration experiment, the time for a specific outlier ratio is
calculated by dividing the total time taken to compute its 500 sets by 500.

10 20 30 40 50
Outlier Ratio (%)

0

10

20

30

40

50

60

Ti
m

e
(m

s)

LinEq
Olsson
Refine
BnB

(a) Object registration

Off0 Off1 Off2 Off3 Off4 Rm0 Rm1 Rm2
Sequences

0

200

400

600

800

1000

1200

Ti
m

e
(m

s)

BnB
Refine
Park
LinEq
Olsson

(b) RGB-D odometry

Figure 11. Elapsed time analysis on object registration and RGB-D odometry tasks. (a) We examine the effect of the outlier ratio on
the computational time for the object registration task. We show a comparable computational speed to the approximated parameter-based
method while maintaining superior performance. (b) Ours reported reasonable run-time speed for odometry on most sequences.

Object registration task. The result of the object registration experiment is illustrated in Fig. 11a. Noticeably, com-
pared to Olsson’s method, which exploits every point-to-plane correspondence, both our method and LinEq demonstrated
shorter computation times by reformulating the original problem into a plane registration of 13 pairs. LinEq consistently
achieved the shortest computation time because the algorithm derives its solution from two consecutive linear equations in
the straightforward Ax = b form.

RGB-D odometry task. The elapsed time for each sequence in RGB-D odometry experiment is shown in Fig. 11b.
Overall, Park’s method demonstrated the highest computational time, primarily due to the high resolution of the input images
(1200 × 680) and the computationally intensive point cloud registration necessary to process a large number of points. Our
BnB algorithm followed Park’s method, showing its highest value in the Room1 sequence. As mentioned in Sec. 5.2, this
exceptionally high value was due to the challenging conditions of this sequence for line matching, as illustrated in Fig. 13.
However, compared to the failure of PlückerNet and Olsson in this scenario, our BnB algorithm successfully estimated the
optimal pose at the cost of significant computational time.

Table 3. Elapsed time of 6D chessboard pose estimation using real images.

MinPnL [45] CvxPnL [2] ASPnL [39] ASP3L [39] RoPnL [23] Refine Ours
t (ms) 80.91 36.34 0.51 0.62 278.18 1.27 1.24

10 20 30 40 50 60 70 80
Outlier Ratio (%)

0

1000

2000

3000

4000

5000

6000

7000

Ti
m

e
(m

s)

MinPnL
CvxPnL
ASPnL
ASP3L
RoPnL
Ours

10 20 30 40 50 60 70 80
Outlier Ratio (%)

0

2000

4000

6000

8000

Ti
m

e
(m

s)

Figure 12. Elapsed time of PnL experiment with synthetic data.

PnL task. As shown in Fig. 12, in the synthetic data experiments, both our method and RoPnL showed an increase in
computational time as the outlier ratio grew. Overall, RoPnL required less computational time than our method; however, its
time increased exponentially with the outlier ratio, taking an average of over 7 seconds at an 80% outlier ratio. In contrast,
despite using BnB for calculating translation, our method achieved significantly shorter computation times at high outlier
ratios and recorded much lower translational errors, as demonstrated in Sec. 5.3.

In the chessboard experiment, RoPnL exhibited significantly large errors when using the same threshold as in the synthetic
experiment, necessitating a reduction in the threshold for a fair comparison. This adjustment resulted in significantly higher
computation times for RoPnL as shown in Tab. 3. Additionally, unlike the synthetic experiments that utilized 100 pairs,
this real-world experiment employed only 7 pairs, corresponding to the 4×3 chessboard pattern. As a result, we observed a
significant reduction in our computation time, making it comparable to the results of ASPnL.

To summarize, as demonstrated in the results of Olsson in the object registration experiment and Park in the RGB-D
odometry experiment, algorithms relying on points tend to require significantly more computational time as the number of
measurements increases, in contrast to algorithms that compress this information into high-level features. Among these,
parameter-based approaches such as LinEq and PlückerNet, which solve linear equations, achieved the shortest computation
times but are limited by suboptimal solutions. Overall, our BnB algorithm successfully identified the inlier set and obtained
an optimal solution in experiments involving a large number of pairs, particularly those with a high outlier ratio, but required
significant computation time. In contrast, experiments with a smaller number of pairs demonstrated significantly shorter
computation times. Considering this, the active use of plane features to robustly aggregate redundant lines, along with the
selective use of meaningful features, is expected to alleviate these time complexity issues in practical applications.

10.2. Failure Cases in RGB-D Odometry

Frame 1 Frame 2

Figure 13. Failure case of Olsson [29] in Room1 sequence.

This section presents visualizations of the frame pairs where each algorithm in the RGB-D odometry experiment recorded
the largest error and includes a brief analysis of the causes. As shown in Fig. 13, the areas highlighted with yellow circles
reveal frequent failures in line segment matching using GlueStick [32]. In the case of Olsson, which performs convex
optimization by considering all correspondences, the algorithm was unable to handle such outliers internally, leading to a
complete failure. Although PlückerNet mitigates this issue to some extent using RANSAC, it failed to find the optimal
solution in this sequence where the outlier ratio is high.

Frame 1 Frame 2

Figure 14. Failure case of Park [31] in Office3 sequence .

Park generalizes the discrete intensity function obtained from the image into a continuous representation in 3D space by
utilizing the gradient at a specific point. The gradient is estimated by minimizing the difference between the intensity of
the continuous function and that of the discrete function across the neighborhood points. In scenes where the point cloud
is dominated by points with the same intensity, as shown in Fig. 14, the objective function exhibits minimal variation with
changes in gradient values, leading to erroneous estimation. This gradient leads to incorrect calculations of the intensity
function in these regions, resulting in large trajectory errors for the algorithm.

	Proof of Theorems
	Proof of Theorem 1
	Proof of Corollary 1.1
	Proof of Theorem 2
	Proof of Problem 2
	Proof of Corollaries

	Derivation Details
	Grassmann Distance
	Displacement Vectors
	Rotation Search
	Line-to-line case
	Line-to-plane case
	Plane-to-plane case

	Translation Search
	Line-to-line case

	Algorithms

	Analysis on Point-based and Parameter-based Methods
	Measurement Variation of Point-based Registration
	Comparison of Curves on Manifold

	Experiments Details
	Time Complexity Analysis
	Failure Cases in RGB-D Odometry

