Graph Domain Adaptation with Dual-branch Encoder and Two-level Alignment
for Whole Slide Image-based Survival Prediction

Supplementary Material

Abstract

In this supplementary material, we provide the mathemat-
ical derivations of the important equations used in the
main text, complexity analysis, more implementation de-
tails, more experimental results and future work.

1. Derivations of Equations (9) and (10)

Following the nations used in the main text, the evidence
lower bound (ELBO) in Eq. (9) of the main text can be
derived as follows:
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The right-hand side of the above equation, i.e., the ELBO
can be further written as

L(q) = Eq(gt ity [log p(5°1G*, G*, y*)p(y°|G*) — log a(5'|G")]
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The second term in the right-hand side of the above equation
is a constant with respect to q(§*|G*) by fixing p(y*|G*®),
and thus maximizing the ELBO is equivalent to minimizing
the KL divergence between ¢(4*|G?) and p(3|G*, G, y®)).

=Eq(gtiar |log + Eq(gt16t)[P(y°1G)]

1.1. Complexity

Assuming a graph G = (V, E) with N nodes and M
edges, and a hidden size of d. In the MP branch, the time
complexity for L-layer GCN is O (L (Md + NdQ)), the
space complexity is O(Ld? + LNd). In the SP branch, the
time complexity is O(K N? + NSLd? + NSd), where S
is the number of shortest paths. The space complexity is
O(Ld? + N? + NSd + NSLd). The time complexity of
the domain discriminator is O(NQd?), and the space com-
plexity is O ((2L + Q)d? + NQd), where Q is the number
of discriminator layers.

Algorithm 1 Learning Algorithm of DETA

Require: Source data D*; Target data D?.
Ensure: Parameters 6 and ¢ for SP and MP branches.
1: // Dual Graph Branch for Semantics Mining
2: Initialize 6 and ¢.
3: Warm up the SP and MP branch to update 6 and ¢.
4: while not convergence do
5: /I Adaptive Perturbation for Domain Alignment
6: Warm up D(-) by Eq. (12).
7. Initialize each ™ and 657
8
9

in the range of (—¢, ¢).
fort=1,2,...,Tdo
: Update SP branch perturbation §°7 by Eq. (13).
10: end for
11: // Branch Coupling for Category Alignment
12: Filter target pseudo-labels with the MP branch.
13: Optimize parameters ¢ with fixed € by Eq. (11).

14: fort=1,2,...,T do

15: Update MP branch perturbation ™7 by
Eq. (13).

16: end for

17: Filter target pseudo-labels with the SP branch.
18: Optimize parameters ¢ with fixed ¢ by Eq. (11).
19: end while

2. Datasets

The Cancer Genome Atlas (TCGA) is a public, widely used
database that contains genomic and clinical data from thou-
sands of cancer patients, covering 33 common types of can-
cer, including but not limited to breast cancer, lung can-
cer, gastric cancer, liver cancer, etc. In this paper, we used
prognostic data from five different cancer datasets in TCGA
to evaluate our model. Specifically, the five selected can-
cer types include: Bladder Urothelial Carcinoma (BLCA),
containing data from 373 patients; Breast Invasive Carci-
noma (BRCA), containing data from 956 patients; Glioblas-
toma Multiforme and Lower Grade Glioma (GBMLGG),
containing data from 569 patients; Lung Adenocarcinoma
(LUAD), containing data from 453 patients; and Uterine
Corpus Endometrial Carcinoma (UCEC), containing data
from 480 patients. To comprehensively evaluate the per-
formance of our model, we used a 5-fold cross-validation
strategy for model training and validation on each dataset.
In addition, we also compared our model with other exist-
ing comparison methods to further verify its effectiveness
and advantages.



3. Implementation Details

In our DETA method, we designed two branches to conduct
experiments: in the MP branch, we adopted GCN [5], and in
the SP branch, we used the shortest path model [1]. Specif-
ically, in the SP branch, we set the maximum path length
K of all datasets to 5. For the adversarial perturbation mod-
ule, we set the number of steps 7' of perturbation learning to
5. Meanwhile, we pre-trained the dual-branch model for 15
epochs and updated the branch coupling module 10 times
on this baseline. In the pseudo-label generation process of
the target dataset, we used the mean of the predicted proba-
bility as the pseudo-label filtering threshold ¢ to ensure the
quality of the pseudo-label. For performance comparison,
we chose to use one of the sub-datasets as the source dataset
and the remaining sub-datasets as the target dataset to eval-
uate the performance of the model in the domain adaptation
task. In terms of the setting of model parameters, we set the
initial learning rate to 0.0005. All experiments were con-
ducted on the same device equipped with NVIDIA A800
GPU to ensure the fairness and consistency of the experi-
mental results. The whole training process is summarized
in Algorithm 1I.

4. More Experimental Results

Tables 1 and 2 show the comparison performance of DETA
and baselines. From the results, we have a similar observa-
tion as we proposed in Section 5.2 of the main text. Fur-
thermore, our method could possibly be extended to gen-
eral GDA tasks as mentioned in the conclusion part of the
paper. We have conducted preliminary experiments on the
Office-Home dataset in comparison with a SOTA method in
Table 3. Moreover, Fig. | shows the t-SNE embedding of
the features extracted from the source and target domains
by our proposed model, which is also consistent with that
presented in Section 5.5 of the main text.

Table 1. The experimental results of survival analysis in one
TCGA datasets as the training set and the other three datasets as
the test sets. We highlight the top two best performing scores in
red and blue, respectively.

Methods BRCA—LGG BRCA—UCEC BRCA—LUAD BRCA—BLCA
AtMIL [3]  0.656640.0147 0.5728+0.0228 0.5619+0.0162 0.557840.0547
CLAM [8] 0.6259+0.0142 0.5436+£0.0160 0.550740.0145 0.53294-0.0334
TransMIL [9] 0.624140.0271 0.5543+£0.0179 0.545440.0013 0.54654-0.0020
DSMIL [6]  0.66431+0.0149 0.5881+0.0083 0.572640.0218 0.573740.0254
PathOmics [2] 0.671940.0301 0.5957+0.0144 0.574440.0258 0.578340.0277
CMTA [12]  0.674940.0287 0.591740.0341 0.5855+0.0192 0.575940.0358
RRTMIL [10] 0.672940.0043 0.6005+0.0019 0.5840+£0.0138 0.5687+0.0212
MoME [11]  0.682440.0501 0.5992+0.0448 0.613740.0345 0.5886+0.0286
WiKG [7] 0.691540.0143 0.5867+0.0157 0.6003+£0.0262 0.5828+0.0417
SurvPath [4]  0.701440.0270 0.612540.0228 0.5994+0.0493 0.613540.0341
DETA (Ours) 0.7530£0.0512 0.6744£0.0418 0.665740.0132 0.651340.0284

Table 2. The results of ablation studies in one TCGA datasets as
the training set and the other three datasets as the test sets. We
highlight the best performing scores in red.

Methods BRCA—LGG BRCA—UCEC BRCA—LUAD BRCA—BLCA
w/o MP 0.7087 1 0.0443 0.6181 0 0563 0.6226) 0. 0431 0.6143 0 0358
w/o SP 0.7004 0.0526 0.63180.0426 0.5963 0.0604 0.6101 0. 0412
wlo §M ¥ 0.6966 0.0564 0.6291,0 0453 0.6112 0 0546 0.59420.0571
w/o 5SP 0.6806Lo‘0724 0.6157‘“)'0587 0‘6061L0‘0596 0'5947l0»0584

wlo §MP155F 0.6750,0.0750 0.60890.0655
w/o BC 0.6878 1 0.0652 0.6448 0. 0206
DETA (Ours) 0.7530 0.6744

0.5974 0.0683
0.6069 | 0.0588
0.6657

0.5908 0.0605
0.5934 4.0579
0.6513

Table 3. Accuracy on Office-Home across different domain shifts.

Methods A—-C A—P A—R C—A C—P C—R P—A P—C P—R

ECB[1] 685 854 883 792 868 89.0 793 664 885
DETA 719 86.8 887 834 875 891 840 696 89.7
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(a) UCEC—BLCA (b) LGG—UCEC

Figure 1. t-SNE visualizations of the feature distributions of
source and target domains by our method.

5. Future Work

In the future, we will explore the applicability of DETA to
other WSI analysis tasks and more general problems that
can be formulated as GDA. However, similar to other do-
main adaptation methods, DETA requires labeled source
domain data. It may not directly apply to settings with
limited supervision, e.g., few-shot or fully unsupervised
scenarios. We will consider source-free methods in future
work.
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