
Supplementary Materials for OG-UPCR

In this supplementary material, we provide a compre-
hensive overview of our work. This includes implemen-
tation details of OG-UPCR (Section 1), details of OCID
(Section 2), metrics (Section 3) and additional experiments
(Section 4). These experiments mainly focus on the anal-
ysis of the OCID module and the GRPA module. We also
provide an analysis of the qualitative experimental results
(Section 5).

1. Implementation Details of OG-UPCR
OG-UPCR is trained using Pytorch on a computer with

both an Intel Xeon CPU @2.30GHZ and NVIDIA Quadro
P6000 GPU. The network undergoes training utilizing the
Adam optimizer [14] for a duration of 10 epochs on the
3DMatch dataset and ScanNet dataset. The batch size is
set to 4, and the weight decay parameter is established at
10−6. The learning rate is initialized at 10−4. Table 5
shows the implementation details and hyperparameters of
OG-UPCR. The parameters related to feature extraction are
maintained consistently with those used in LLT [19] and
PointMBF [21]. During testing, larger initial correspon-
dences are selected to fully leverage OCID’s ability to iden-
tify reliable correspondences. The top-k selection method is
employed to select wthr, ensuring that the same number of
correspondences are used for a fair comparison with other
methods. Additionally, the batch size is set to 1 to maintain
the invariance of the results. The detailed architecture of the
feature extraction is available in PointMBF [21].

2. Details of OCID
As shown in Fig. 8, we present two examples to rep-

resent the principle of random overlapping region predic-
tion. First, a subset is randomly selected from the initial
correspondences of the input, and the weighted SVD algo-
rithm [5] is applied to obtain the coarse transformation re-
sult. Based on this coarse transformation, the overlap ra-
tio Op between the point clouds is predicted. If the Op

exceeds the threshold Othr, the subset is considered pos-
itive, and the corresponding weights within the subset are
increased. Conversely, if the Op is smaller than Othr, the
subset is considered negative, and its weights are penalized.
After several iterations of this process, the weights of the
initial correspondences are clearly differentiated, making it

Stage Implementation details Parameters

Feature extraction

Batch size 4
Image size 128*128
Feature dimension 32
Training epochs 12
Optimizer Adam
Learning rate 1e-4
Weight decay 1e-6
Momentum 0.9
λgs 0.1
λcorr 1

Initial correspondences Number of initial correspondences k (train) 200
Number of initial correspondences k (test) 2500

OCID

Positive radius τ 0.05
Overlapping region constraint Othr 0.1
Neighborhood radius R 0.1
Number of iterations N 10
The top-k algorithm for wthr (test) 200
Number of neighbor correspondences 30in consensus set K

Table 5. The implementation details and hyperparameters of OG-
UPCR.

straightforward to use the top-k algorithm to identify reli-
able correspondences for geometric fitting. We also provide
a pseudocode for random overlapping region prediction, as
shown in Algorithm. 1.

3. Metrics
By convention [8, 9, 19, 21], we employ three metrics

to evaluate RGB-D point cloud registration: rotation error,
translation error and chamfer error.

3.1. Rotation Error
The rotation error is defined as the geodesic distance

between the estimated and ground-truth rotation matri-
ces, quantifying the difference between the predicted and
ground-truth rotations, which can be expressed as:

Erotation = arccos

(
trace

(
RprR

T
gt

)
− 1

2

)
. (1)

3.2. Translation Error
The translation error is defined as the Euclidean distance

between the estimated and ground-truth translation vec-
tors, quantifying the difference between the predicted and
ground-truth translation vectors, which can be expressed as:

Etranslation = ∥tpr − tgt∥2 . (2)
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STEP1: 从特征层面考虑早期对应的权重关
系，根据洛氏法获取初始对应集中每个对应
分配的权重；
STEP2: 在初始对应集上，添加重叠区域约
束。随机选取对应子集，利用SVD得到对应
变换，若求解得到的变换估计重叠率小于
Othr，则认定为消极子集，消极子集内点的
权重乘一个消极衰减率，若重叠率大于
Othr，则认定为积极子集，积极子集内点权
重乘一个积极系数。
STEP2: 整个过程迭代进行优化，当某一对
应点权重衰减到阈值wthr时，认定为异常值
筛去。当迭代结束时，根据topk算法筛选权
重较高的K个对应作为新的对应集。
STEP4: 在新的对应集基础上，进一步在原
始点的基础上考虑刚性配准固有的全局和局
部空间一致性关系，采用二阶空间一致性约
束进一步过滤对应。
STEP5: 由于多次过滤的对应集包含很高的
inlier ratio，固可以采用RANSAC/随机权重
SVD优化算法对最终得到的对应集进行快速
精确的几何变换估计。
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Figure 8. Flowchart of random overlapping region prediction.

3.3. Chamfer Error
The chamfer error is defined as the closest pair of points

between the registered point clouds P and Q, evaluating the
performance of their registration, which can be expressed
as:

Echam = |P |−1
∑

(p,q)∈ΛP,Q

∥xp − xq∥+ |Q|−1
∑

(q,p)∈ΛQ,P

∥xq − xp∥ ,

(3)
where ΛP,Q =

{(
p, argminq∈Q ∥p− q∥

)
: p ∈ P

}
.

4. Additional Experiments
4.1. Comparison of Performance Decay

As illustrated in Fig. 9, we provide a comparison plot
that demonstrates the performance decline from the eas-
ier ScanNet dataset to the more challenging ScanNet1500.
The plot clearly highlights the significant performance
degradation of the unsupervised methods LLT [19] and
PointMBF [21] in scenarios with low overlap and view-
point variations. In contrast, our method and the supervised
method BUFFER [1] maintain similar performance, prov-
ing the advantage of our approach.

4.2. Further Analysis of OCID
To demonstrate the superiority of the proposed OCID,

we compare it with similar correspondence optimization
strategies, including Weighted Kabsch [9, 12, 19, 21],
RANSAC [10], SC2PCR [4], and MAC [22], by replac-
ing OCID with these modules. The experimental results

Algorithm 1 Random Overlapping Region Prediction
Input:

Cinitial = {(p,q, w)m : 0 ≤ m < 2k}

Parameter: Positive radius τ , Overlap threshold Othr,
Number of iterations N .
Output:

Cf =
{
(p,q, w)f : 0 ≤ f < 2k

}
1: Let i = 0, τ = 0.05, Othr = 0.1, N = 10.
2: while i ≤ N do
3: Randomly select a partial subset Cn ∈ Cinitial.
4: Ts = Weighted SVD(Cn).
5: Let Op = compute overlap(P,Q,Ts, τ ).
6: if Op < Othr then
7: wn = wn · wp

8: else
9: wn = wn · wr

10: end if
11: i = i+ 1
12: end while
13: if wn < wthr then
14: Remove outliers
15: end if
16: return Cf

93.4 → 36.1 

94.6 → 51.1 

95.9 → 74.9 97.9 → 76.9 

20.0

40.0

60.0

80.0

100.0

90.0 92.0 94.0 96.0 98.0 100.0

R
o

ta
ti

o
n

 e
rr

o
r<

5
°

re
s

u
lt

s
  

o
n

  

S
c
a

n
N

e
t1

5
0

0
 (

%
)

Rotation error<5° results  on  ScanNet (%)

76.9 →17.2 

81.0 → 31.5 

79.6 →47.4 
87.7 → 49.5 

0.0

15.0

30.0

45.0

60.0

70.0 74.0 78.0 82.0 86.0 90.0

T
ra

n
s

la
ti

o
n

 e
rr

o
r<

5
c

m
  

o
n

  
S

c
a

n
N

e
t1

5
0

0
 (

%
)

Translation error<5cm  on  ScanNet (%)

LLT

PointMBF

BUFFER

Ours

RGB Input GT PointMBFOurs

Figure 9. Comparison plot of performance decay. The model is
trained on 3DMatch and tested on ScanNet and ScanNet1500. Our
method maintains comparable performance with the supervised
BUFFER, while other methods experience significant decay.

presented in Table 6 show that while SC2PCR and MAC
perform well, they are time-consuming. In contrast, our
method employs the overlapping constraint to obtain reli-
able correspondences, resulting in reduced processing time
and improved accuracy. Additionally, the proposed OCID
can optimize the traditional RANSAC algorithm, enhancing
its performance.

To further explore the effect of OCID module, we con-
duct experiments on the real low-overlap point cloud dataset
RESSO [3]. As presented in Table 7, integrating the OCID



Method
Rotation(°) Translation(cm) Chamfer(mm)

Time(s)Accuracy Error Accuracy Error Accuracy Error
< 5 Med < 5 Med < 5 Med

Weighted Kabsch 65.1 2.1 42.3 6.8 57.1 0.5 0.044
RANSAC 62.9 2.3 37.2 7.5 54.3 0.7 1.262
SC2PCR 79.7 1.6 49.3 5.1 69.9 0.3 0.509
MAC 78.1 1.8 48.6 5.5 68.2 0.4 5.291
OCID+RANSAC 79.7 1.5 53.7 4.5 71.6 0.3 0.995
OCID(Ours) 81.3 1.5 53.5 4.3 72.4 0.3 0.125

Table 6. Comparison of correspondence optimization strategies.
The model is trained on ScanNet and tested on ScanNet1500.

module enhances the performance of RANSAC [10] and
PLADE [3] in low-overlap scenarios.

Method 6(a) 6(b) 6(c) 6(d) 6(f) 6(g) 6(h) 6(j) 7(a) 7(b) 7(c)
RANSAC 15 16 16 13 50 67 43 0 43 33 100
RANSAC+OCID 62 42 47 33 80 78 57 75 100 50 100
PLADE 77 53 37 67 70 78 64 50 100 100 100
PLADE+OCID 77 63 53 67 80 78 79 100 100 100 100

Table 7. Registration results on RESSO.

4.3. Effect of Hyperparameter
Iteration Number N . In order to explore the effect of
the proposed hyperparameter iteration number N on the
method in the random overlapping region prediction mod-
ule, we conduct quantitative experiments with different iter-
ation values, as shown in Table 8. The experimental results
demonstrate that as the number of iterations N increases,
the overall accuracy of the method improves. However, an
excessive number of iterations leads to increased computa-
tional time. To balance accuracy and efficiency, we select
N = 10 to optimize the overall model performance.

Iteration
Rotation(°) Translation(cm) Chamfer(mm)

Time(s)Accuracy Error Accuracy Error Accuracy Error
< 5 Med < 5 Med < 1 Med

5 81.1 1.5 53.0 4.5 72.0 0.3 0.076
10 81.3 1.5 53.5 4.3 72.4 0.3 0.125
30 81.3 1.5 53.7 4.3 73.1 0.3 0.321
100 81.9 1.5 54.1 4.3 73.5 0.3 0.928

Table 8. Pairwise registration accuracies and errors under different
hyperparameter N . The model is trained on ScanNet and tested on
ScanNet1500. The best result is shown in bold.

Overlapping Region Constraint Othr. Following the pre-
vious work [3, 11], we further explore the effect of the
hyperparameter overlap constraint Othr. As shown in Ta-
ble 9, the registration performance first increases and then
decreases as Othr is changed, and according to this change,
we choose 0.10 as the threshold for the overlap constraint.
Reward and Penalty Factors wr/wp. To explore the ef-
fect of the reward and penalty factors wr/wp, we performed
a sensitivity analysis. As shown in Table 10, performance
improves regardless of the reward and penalty factors value.
Optimal performance is achieved when wr/wp is set to
2/0.5.

Othr

Rotation(°) Translation(cm) Chamfer(mm)
Accuracy Error Accuracy Error Accuracy Error

< 5 Med < 5 Med < 1 Med
0.05 81.0 1.5 53.0 4.4 72.0 0.3
0.10 81.3 1.5 53.5 4.3 72.4 0.3
0.15 80.7 1.5 53.3 4.5 71.9 0.3
0.20 80.3 1.5 53.1 4.5 71.4 0.3
0.25 80.1 1.5 53.0 4.5 71.2 0.3
0.30 79.9 1.6 52.4 4.5 70.9 0.3

Table 9. Pairwise registration accuracies and errors under different
hyperparameter Othr . The model is trained on ScanNet and tested
on ScanNet1500. The best result is shown in bold.

Reward Factor Penalty Factor
Rotation(°) Translation(cm) Chamfer(mm)

Accuracy Error Accuracy Error Accuracy Error
<5 Med <5 Med <1 Med

4/3 3/4 79.7 1.6 51.3 4.8 71.5 0.3
3/2 2/3 80.7 1.5 52.6 4.6 71.5 0.3
2 1/2 81.3 1.5 53.5 4.3 72.4 0.3
3 1/3 80.9 1.5 53.4 4.4 72.3 0.3

Table 10. Pairwise registration accuracies and errors under differ-
ent reward and penalty factors wr/wp. The model is trained on
ScanNet and tested on ScanNet1500. The best result is shown in
bold.

4.4. Further Analysis of GRPA
As shown in Fig. 10, traditional differentiable rendering

directly projects 3D points into the image space without
adaptive optimization, while 3D Gaussian Splatting offers
partial adaptability to photometric inconsistencies arising
from viewpoint changes. Based on this, we apply an adap-
tive photometric correction to each pixel post-rendering,
making the model more robust to view pairs with large
viewpoint variations.

To further explore the effect of GRPA module on our
model, we visualize the point cloud feature descriptors be-
fore and after its integration. As shown in Fig. 11, the re-
sults clearly indicate that after applying the GRPA module,
the regions of the scene affected by viewpoint changes ex-
hibit more consistent feature extraction for registration. In
contrast, without the GRPA module, the features are sig-
nificantly more cluttered. These observations highlight the
effectiveness of the GRPA module for pairwise registra-
tion tasks involving inconsistent photometric information
caused by viewpoint variations.

4.5. In-depth Comparison to Sparse Views Methods
We conduct an in-deppth comparison to sparse views

methods for pose estimation. However, A direct compari-
son with methods such as Mast3R [15] is not feasible, as
they aim to establish correspondences between 2D pixel
fields, whereas our approach focuses on estimating corre-
spondences between point clouds to compute the transfor-
mation matrix. For a fair evaluation, a viable solution is to
project our results into the image space. As presented in
Table 11, our method significantly outperforms them, pri-
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Figure 10. (a) Traditional differentiable renderer [16] directly
projects 3D points, whereas (b) 3D Gaussian Splatting [13] op-
timizes its own parameters to adapt to photometric changes during
projection. (c) In contrast, the proposed GRPA further optimizes
each pixel rendered based on 3D Gaussians [13] to enhance the
model’s robustness against photometric inconsistencies.

marily because point clouds inherently represent geometric
shapes and are less sensitive to textureless regions, aligning
with motivation of Mast3R [15].

Method 5°↑ 10°↑ 20°↑
Dust3R [18] 0.221 0.437 0.636
Mast3R [15] 0.159 0.359 0.573
RoMa [7] 0.270 0.492 0.673
NoPoSplat [20] 0.318 0.538 0.717
Ours 0.489 0.690 0.797

Table 11. Comparison with sparse views methods after projection
into the image space on ScanNet1500. The best result is shown in
bold.

4.6. Runtime Analysis
We report the mean and standard deviation of the run-

time for each stage, comparing it to PointMBF. The cor-
respondence estimation module includes the computation
time for both initial correspondence acquisition and corre-
spondence optimization. As shown in Table 12, OG-UPCR
only requires approximately 57ms more per run compared
to PointMBF [21], but the registration performance is sig-
nificantly improved. Furthermore, the rendering module is
363.5% faster than traditional differentiable renderer.

Stage Time(ms)
PointMBF Ours

Feature extraction 19.76±31.57 19.07±32.55
Correspondence estimation 24.02±10.00 64.86±17.70
Geometric fitting 31.29±17.03 51.13±45.73
Rendering 3.49±8.53 0.96±0.15

Table 12. Runtime analysis of each stage compared to PointMBF.

Ours w/o GRPAGTRGB

GT OursRGB w/o GRPA

Figure 11. The red-boxed areas represent the overlapping regions.
Due to changes in perspective, the photometric information in
these areas becomes inconsistent, complicating the registration.
The proposed GRPA module mitigates the effects of viewpoint
variation, thereby helping the model extract more consistent fea-
tures for registration. The features are visualized by mapping them
to colors by t-SNE [2].

4.7. Computational Footprint
The GPU-memory statistics for each stage are presented

in Table 13. The computational footprint is small due to
only two frames to process.

Stage Memory (MB)
Feature extraction 2985.98
Correspondence estimation 19.05
Geometric fitting 0.30
Gaussian Rendering 213.89

Table 13. GPU-memory statistics for each stage (batchsize=1).

5. Additional Qualitative Results
We classify the scenes into two categories: low-overlap

scenes and illumination-variation scenes. Sufficient quali-
tative results are analyzed for both scenarios separately to
fully demonstrate the effectiveness of our method.

As illustrated in Fig. 12, in the low-overlap scenes, the
correspondences obtained by PointMBF contain a large
number of outliers, leading to registration failure. In con-
trast, our method relies on the overlap constraint to obtain
more accurate correspondences, resulting in successful reg-
istration.

Similarly, as shown in Fig. 13, when viewpoint changes
drastically across different viewing angles, our method
demonstrates greater robustness compared to PointMBF,
yielding more inliers and ultimately achieving successful
registration.

6. Limitations
Although the proposed OG-UPCR achieves superior per-

formance in challenging scenarios, it still has certain limita-
tions. First, it relies on KPconv [17] for point cloud feature



extraction, which makes it vulnerable to large-scale rota-
tion interference, while ensuring rotation equivariance and
translation invariance. To address this issue, we plan to re-
place equivariant backbones [6, 23] in future work to further
improve the robustness of the overall registration model.
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Figure 12. Qualitative results compared with PointMBF in the low-overlap scenario. The red lines denote the outliers, while the green lines
denote the inliers.
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Figure 13. Qualitative results compared with PointMBF in the viewpoint variation scenario. The red lines denote the outliers, while the
green lines denote the inliers.
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