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A. Preliminary
• Diffusion Loss in Text-to-Video Generation. During
training, T2V diffusion models [7, 10, 11, 16, 17, 20, 26,
28] first add noise ϵ to image sequence z1:N0 to get current
latents z1:Nt in time t.

z1:Nt =
√
ᾱtz

1:N
0 +

√
1− ᾱtϵ, ᾱt =

t∏
i=1

αi, (i)

where αt is the hyperparameter specified by variance sched-
uler. Then, the estimation network εθ is trained to infer the
injected noise from current latents and conditions. The goal
is to minimize the following item:

argmin
θ
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• Plücker Embedding. Directly feeding the explicit cam-
era information into network [23] is simple but not effective.
To this end, CameraCtrl [8] uses plücker embedding to
represent camera pose for geometric interpretation. For
each pixel (u, v) in the image space, the plücker embedding
is calculated as (oc × du,v,du,v), where oc is camera
location in the global coordinate system. The direction
vector du,v is computed by RK−1[u, v, 1] + oc, where
R and K are rotation and intrinsic matrices respectively.
The plücker embedding of the frame composes of the
embeddings in each location.

B. SynFMC Dataset
B.1. Asset Collection and Annotation
The panoramic HDRI maps serve as environments during
rendering. We source 88 ground/near ground, 25 sky,
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Table I. Object asset distribution across environments.

Environment Type Object Asset Percentage(%)

Ground 35.33
Near Ground 19.09
Water Surface 12.94

Sky 17.17
Underwater 15.47

27 underwater and 6 water surface HDRIs from Poly-
Haven [14], BlenderKit [1] and other websites. In addition,
1-4 texts are provided for each background, facilitating
to complete the total descriptions of videos. For object
assets, we source the objects with available animations
from public datasets [3, 4] and other websites [13], which
cover a diverse range of categories. Then, we query
InternVL [2] about some basic properties of the object such
as class name, environment, speed and size types. Among
them, the environment type indicates the object’s matching
environment assets. Table I represents the distribution
of object assets across environments. The definition of
speed and size types, and the asset percentage of each
category are shown in Table II. These information are useful
in trajectory generation and rendering stages for realistic
simulation. The comprehensive query texts of MLLM are
presented in Figure XIX-Figure XXI. Finally, the human
annotators will verify or correct these information. Besides,
they require to annotate the motion type and description of
each object animation. Specifically, we assign the action
type to each animation according to the environment type
and visual effect, which corresponds to several motion
types as shown in Table III. For example, the in-place
animations like dancing are assigned to “Idle”. The whole
process of asset collection and annotation is presented in
Figure I. Figure III presents several examples from each
environment, demonstrating various object and background
in SynFMC. Figure II also indicates the category diversity



Table II. Definition of speed and size types and asset percentage of each category.

Speed Type Speed (m/s) Object Asset Percentage(%) Size Type Size (cm) Object Asset Percentage(%)

Stationary 0 20.32 Tiny 0.1-5 3.92
Slow 0.01-1.5 6.21 Small 5-30 8.38

Moderate 1.5-10 37.33 Medium 30-150 32.04
Fast 10-60 28.11 Large 150-300 37.66

Very Fast 60-340 5.78 Extra-Large 300-500 16.12
Supersonic >340 2.25 Gigantic >500 1.88

Table III. Distribution of object action types.

Action Type Available Environments Motion Type Percentage(%)

Idle All Environments Stationary Point 34.83
Move Ground&Water Surface Horizontal Line / Curve 26.99
Fly Near Ground&Sky (Non-)Horizontal Line / Curve 21.17

Swim Underwater (Non-)Horizontal Line / Curve 17.01

of 3D assets in SynFMC.

B.2. Data Generation

• Motion Simulation. In object motion simulation, we
initialize the object’s position based on it’s corresponding
environment. For the ground and water surface, vertical
coordinates are set to 0. Then, we use Bézier curve to
simulate the object’s trajectory for each motion segment.
Specifically, the control points and endpoint positions are
randomized, while ensuring that the curve length is less
than the product of the object’s speed and time. Afterward,
we construct the object’s rotation matrix using the curve’s
tangent and normal vectors. For camera simulation, we
obtain the camera’s location based on the object’s position
and the offset vector. The direction and magnitude of
the vector on the horizontal plane are determined by the
camera’s viewpoint type and distance type respectively. For
example, for the front viewpoint, the direction corresponds
to the projection of the object’s velocity onto the horizon-
tal plane. For the magnitude, we determine the current
value based on distance type and the value in the previous
step. The height type determines the magnitude of the
offset vector along the vertical axis. Finally, the camera
orientation is adjusted to focus on a random offset from
the object’s centroid. Figure III illustrates various object
and camera motion patterns, which facilitate the model
learning complicated dynamics from videos. Figure IV
shows examples from different scenes. Notably, the multi-
object examples (in the 3rd and 4th rows) simulate the
complex, irregular characteristics in the real world, where
objects accidentally enter or disappear from the field of
view.
• Video Annotations. To support diverse research tasks,
SynFMC provides auxiliary annotations, including instance
segmentation maps [5, 6], depth maps, and descriptions of
both visual content and motion. An example is shown in
Figure V. Notably, we provide an algorithm to automati-

cally generate motion descriptions. For content description,
the appearing objects are tracked in each frame to identify
which objects enter or exit the view. The following template
is used: “[background description], [objects description in
the first frame]. [entering objects description], [exiting ob-
jects description]. . . ” For example: “With forest backdrop,
a man and a woman are walking. Then a cat enters the
view, while the man disappears from the image.” For motion
description, key frames are extracted at equal intervals,
and we calculate the camera’s position change between
consecutive frames to describe its motion, e.g., “The camera
moves upward and forward.”

C. Free-Form Motion Control

C.1. Network Architecture of Motion Controllers
For OMC (Object Motion Controller), we use ControlNet-
like architecture [27] to receive spatial-form conditions of
object pose. CMC (Camera Motion Controller) consists of
two parts: Camera Encoder and Camera Adapter, where
the Camera Adapter is introduced into the temporal mod-
ules. We adopt the similar architecture from previous
works [8].

C.2. Discussion about Interaction of Control Signals
The object and camera motions are controlled indepen-
dently in our FMC, since their control signals are defined
in camera space and world space, respectively. Specif-
ically, the object control map identifies the object pose
(location, size, and orientation) from camera view. An
example in Figure VI (self-attention maps in 2nd row are
visualized via PCA) shows the object and camera moving
in opposite directions. Camera motion (to left in world
space) shifts scene viewpoint, e.g., the background rock
moves right, while the moving object’s camera-view pose is
independently governed by object control signal (to lower-
right and disappear).



Figure I. Process of asset collection and annotation. The fields marked with hollow circles are fully annotated by human annotators.

(a) Object category distribution (Top 90) (b) Environment category distribution

Figure II. Statistics of 3D assets in SynFMC. (a) and (b) indicate the category distributions of objects and environments respectively.

C.3. Construction of Training Data
We randomly sample frames from the original video at uni-
form intervals and obtain the corresponding object masks.
Since SynFMC provides detailed background, object, and
action descriptions at each time step, the text descriptions
of videos can be automatically constructed using specific
templates. The text description, object masks and cam-
era&object pose annotations are then used to train motion
controllers.

C.4. Construction of Validation Data
To construct validation samples for qualitative and quantita-
tive experiments, we use different strategies for independent
camera/object control and simultaneous control.
• Independent Camera Control. GPT-4 is queried to
generate 1000 descriptions for scenes with and without dy-
namic object respectively, accessing the ability of models in
different scenarios. For motion conditions, our rule-based
algorithm is employed to generate the camera trajectory
while omitting the object movements.
• Independent Object Control. In this setting, we utilize
descriptions of scenes with dynamic object as mentioned
above. For motion conditions, we only consider the object
trajectories and the camera is fixed in the space.
• Simultaneous Control. We query 500 descriptions for

each scene: static single-object, static multi-object, dynamic
single-object and dynamic multi-object. Then the algorithm
generates the trajectories based on the scene types.

C.5. More Details of User Study
We employed 42 volunteers to evaluate outputs from each
method via a platform shown in Figure VII. To ensure
fairness, the method used for each video was hidden from
users. Scores were averaged and normalized by the max-
imum value. We assess following metrics: 1) Quality
was evaluated by deviation from the base model’s quality.
2) Text similarity was accessed based on coverage of all
semantic elements in the prompt. 3) Camera/Object motion
fidelity was measured by comparing generated videos with
reference videos rendered in Unreal Engine using the same
trajectories.

C.6. More Results in Independent Control of
Camera

The results of independent camera motion control are pre-
sented in Figure VIII. As shown in first five rows, FMC
is capable of performing basic translational and rotational
movements with high accuracy. For more complex camera
motions that involve both translation and rotation, FMC can
still reliably generate the desired movements, maintaining
high fidelity to motion condition. Furthermore, as shown



Figure III. Examples of synthetic videos in SynFMC from different environments.

in rows 5, 7, 8, when applied to scenes with dynamic
objects, FMC demonstrates its ability to generate realistic
and coherent object motion.

C.7. More Results in Independent Control of Object

Figure IX presents several examples of independent ob-
ject motion control, spanning both basic (the 1st and 2nd
examples) and complicated (the 3rd example) scenarios.



Figure IV. Examples of synthetic videos in SynFMC from different scenes.

Spiderman and Batman are walking on the 
outdoor space. Then Captain America comes 
into view and Batman steps out of the frame

First, the camera focuses on Spiderman and 
pans to the left. It then shifts to the right, 
centering on Captain America
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Figure V. An example of auxiliary annotations in SynFMC.
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Figure VI. Discussion about the interaction of control signals.

The results from MotionCtrl [23] and Direct-a-Video [24]

Figure VII. The platform for user study.

show that the background content in the video often exhibits



random dynamics (rows 1, 2, 7, 8). Furthermore, the
object presents low-quality appearance (row 7) or incorrect
orientation (rows 5, 7, 8) in several cases. This observation
suggests that the image space methods [12, 15, 21, 25]
couple the movements of both the objects and the camera,
while lacking the orientation information of the object. In
contrast, FMC addresses this issue by introducing a fixed
camera pose sequence as input, thereby constraining the
camera to remain stationary effectively. Besides, the 6D
object pose also facilitates FMC generating high quality
appearance and reasonable orientation.

C.8. More Results in Simultaneous Control
For simultaneously controlling motions of camera and ob-
jects, Figure X and Figure XI show the results of the
proposed FMC and MotionCtrl [23] in single-object scenes.
MotionCtrl [23] often fails to produce correct results due to
its inability to access both the camera and object motion
annotations during training, where the object frequently
disappears from the field of view in cases with complicated
camera motion (1st row in Figure X and most cases in
Figure XI ). In contrast, FMC achieves superior perfor-
mance in both static and dynamic scenarios. This is
primarily due to the comprehensive 6D pose information
in SynFMC. Additionally, OMC’s enhanced perception of
object orientation and size, as well as its efficient training
objective, ensure robust and high quality outcomes across
various settings. Figure XII presents the results in multi-
object scenes. The figure highlights the capability of FMC
to control the intricate movements of multiple objects and
camera within the same video.

C.9. More Results in Ablation Study
• More Results in SynFMC Dataset. To thoroughly
assess the effectiveness and generalization capabilities of
our dataset, we train the MotionCtrl [23] with SynFMC.
In this experiment, we adopt the same training strategy
and configuration outlined in our FMC. As shown in the
1st and 3rd rows of Figure XIII, without the camera poses
CRT , it becomes difficult to maintain a consistent and
stable appearance of the object across frames, leading
to suboptimal results. This issue becomes even more
pronounced when more complex camera movements are
involved. On the other hand, as demonstrated in the 2nd and
4th rows, the integration of camera condition significantly
mitigates these problems.
• More Results in Object Motion Control Modules.
Figure XIV presents a comparative analysis of the results
produced by MotionCtrl [23] trained on SynFMC, and our
method. As shown in the figure, FMC accurately captures
the changes in object orientation and size within the image,
due to the OMC in FMC can handle with the 6D pose
and coarse mask of the object. In contrast, MotionCtrl can

only handle with the trajectory input confined to the image
space, which restricts its ability to generate plausible object
appearances across varying viewpoints.
• More Results in Training Objectives. To illustrate the
effectiveness of the training objective at each stage, we use
the standard diffusion loss [9, 22] to train CMC and OMC.
The impact of Lcam defined in Eq.1 is demonstrated in
Figure XV. The 1st row reveals that the model struggles
to learn complex camera movements without Lcam under
the same training configuration. Moreover, the 3rd row
of Figure XV shows that the model instead moves the
object to satisfy the relative movement indicated by the
motion conditions (the petals of the lotus are unnaturally
stretched toward the camera). Figure XVI underscores the
importance of Lobj in Eq.2. As seen in the 1st and 3rd rows,
the model fails to generate coherent object appearances with
the standard diffusion loss. By introducing Lobj , the OMC
is able to concentrate on the object region, resulting in
higher training efficiency and video quality.
• More Results in Personalized T2I Models. Figure XVII
demonstrates the generation results of FMC based on differ-
ent T2I personalized models [18, 19]. The generated results
not only accurately reflect the motion conditions but also
retain the distinctive stylistic features inherent to the used
backbones. This validates both the effectiveness and the
generalizability of our SynFMC and corresponding training
strategy.

D. Failure Cases
Although FMC presents significant advancements, it still
exhibits room for improvement in scenarios involving
multi-object motion control. As shown in the 1st row of
Figure XVIII, FMC fails to completely reflect semantics
contained in the description (the bird is omitted in the
video). This limitation becomes even more apparent when
the number of objects or the complexity of movements
increases, as shown in the 2nd row. We will solve the issue
in our future works.



a turtle in front of seabed

a raccoon rests in the barren land

canyon rim with a view of red rocks

cactus in the garden

a rhinoceros is strolling by the river

fire in the ground covered with maple leaves

temple ruin in the meadow

wooden cottage

Figure VIII. Independent control over camera motion. The first five rows illustrates basic translational or rotational movements. Other
rows present more complex camera motions that involve both translation and rotation. FMC can generate high fidelity results in each case.
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Figure IX. Independent control over object motion. The results from MotionCtrl [23] and Direct-a-Video [24] show that the background
content in the video often exhibits random dynamics. Furthermore, the object presents low-quality appearance or incorrect orientation in
several cases.
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Figure X. Simultaneous control in static single-object scene.
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Figure XI. Simultaneous control in dynamic single-object scene.
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Figure XII. Simultaneous control in multi-object scenes.



a lotus over water

a bowl of noodles

Figure XIII. Ablation study of MotionCtrl [23] trained on our SynFMC. The integration of camera condition makes the model generate
reasonable results in simultaneous control.
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Figure XIV. Ablation study of object motion control modules from MotionCtrl [23] and our FMC. MotionCtrl struggles to generate
plausible object appearances across varying viewpoints since it can only handle with the trajectory input confined to the image space, being
insensitive to the orientation and size of the object within the image.



the lotus over the 
water surface

a crab is resting  

Figure XV. Ablation study of camera loss Lcam. The 1st row reveals that the model struggles to learn complex camera movements without
Lcam under the same training configuration. The 3rd row shows that the model tends to move the object to satisfy the relative movement
indicated by the motion conditions (the petals of the lotus are unnaturally stretched toward the camera).

a bear in the grass 

a wolf is walking

Figure XVI. Ablation study of object loss Lobj . The model fails to generate coherent object appearance with the standard diffusion loss.
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Figure XVII. Results of FMC based on different T2I personalized backbones [18, 29].

a bird and a drone

three boys are running on the ground

Figure XVIII. Failure cases of our FMC. In some challenging scenarios involving multi-object motion control, FMC fails to completely
reflect semantics contained in the description.



LLM System: You are an assistant specialized in deducing the habitat classification of objects based on their class names. You will 
classify them into one of the following categories based on the typical environment in which they are commonly found:
1. Ground: Objects that are primarily found on or associated with the ground, such as animals (human, character, dog, snake, 

monkey, deer, etc.), ground vehicles (car, motorbike, bike, etc.), plants, buildings, etc.
2. Near Ground: Objects that are primarily flying or hovering close to the ground, such as small birds, insects like bees or moths, 

and drones.
3. Sky: Objects that are primarily found in the sky, such as airplanes, eagles, or large birds.
4. Water Surface : Objects that are primarily found on the surface of water or associated with water activities, such as duck, boats, 

water lily, floating devices, or bridges.
5. Underwater: Objects that are primarily found underwater or associated with underwater activities, such as fish, dolphin, coral,

diving equipment, submarines, etc.

LLM Task: Based on the class name of the object, deduce the environment in which it is typically found and classify it into one of 
the categories above. Please directly return the category without other words. 

LLM Examples: Here are some examples:
1. Class name of object: Human

Response: Ground
2. Class name of object: Car  

Response: Ground
3. Class name of object: Bee

Response: Near Ground
4. Class name of object: Butterfly  

Response: Near Ground

5. Class name of object: Eagle  
Response: Sky

6. Class name of object: Airplane
Response: Sky

7. Class name of object: Duck  
Response: Water Surface

8. Class name of object: Boat
Response: Water Surface

9. Class name of object: Fish  
Response: Underwater

10. Class name of object: Submarine
Response: Underwater

Figure XIX. The query text for deducing the object’s environment type in MLLM.

LLM System: You are an assistant specialized in deducing the speed classification of objects based on their class names. You will
classify them according to their typical speed in daily life into one of the following categories:
1. Stationary: Objects that do not move or move very little, typically 0 m/s, such as buildings, trees.
2. Slow: Objects that move very slowly, typically between 0.01-1.5 m/s, such as snails, turtles, or slow-moving objects like 

conveyor belts.
3. Moderate: Objects with moderate speed, typically between 1.5-10 m/s, such as humans, dogs, or bicycles.
4. Fast: Objects that move quickly, typically between 10-60 m/s, such as cars, fast animals like cheetahs, or trains.
5. Very Fast: Objects that move at high speeds, typically between 60-340 m/s, such as airplanes, high-speed trains, or fast birds 

like peregrine falcons.
6. Supersonic: Objects moving faster than the speed of sound, typically over 340 m/s, such as fighter jets or rockets. 

LLM Task: Based on the class name of the object, deduce its speed and classify it into one of the categories above. Please directly 
return the category without other words. 

LLM Examples: Here are some examples:
1. Class name of object: Tree  

Response: Stationary
2. Class name of object: Stone  

Response: Stationary
3. Class name of object: Snail  

Response: Slow

4. Class name of object: Car  
Response: Fast

5. Class name of object: Balloon  
Response: Moderate

6. Class name of object: Human
Response: Moderate

7. Class name of object: Cheetah  
Response: Fast

8. Class name of object: Airplane  
Response: Very Fast

9. Class name of object: Fighter Jet  
Response: Supersonic

Figure XX. The query text for deducing the object’s speed type in MLLM.



LLM System: You are an assistant specialized in deducing the size classification of objects based on their class names. You will
classify them according to their typical size in daily life into one of the following categories:
1. Tiny: Objects typically between 0.1-5 cm in length, such as nails, coins, buttons, insects (ants, bees, etc.).
2. Small: Handheld or smaller objects, or small animals or plants typically between 5-30 cm in length, such as phones, keys, cups, 

small birds, hamsters, grass etc.
3. Medium: Larger than small objects but still easily carried by one person, typically between 30-150 cm in length, such as chairs, 

computer monitors, microwaves, flowers, dogs, cats, duck and large birds.
4. Large: Objects that usually require two or more people to move, or are difficult to transport, typically between 150-300 cm in 

length, such as humans, characters, robots, sofas, refrigerators, beds, large dogs, deer, and sheep.
5. Extra-Large: Objects between 300-500 cm that require specialized equipment to move, such as trees, cars, parts of ships, cows, 

horses, elephants and giraffes.
6. Gigantic: Large public objects, or very large animals, typically over 500 cm in length, such as airplanes, bridges, large buildings, 

and whales.

LLM Task: Based on the class name of the object, deduce its size and classify it into one of the categories above. Please directly 
return the category without other words.

LLM Examples: Here are some examples:
1. Class name of object: Phone  

Response: Small
2. Class name of object: Dog

Response: Medium
3. Class name of object: Car  

Response: Extra-Large

4. Class name of object: Key  
Response: Small

5. Class name of object: Elephant  
Response: Extra-Large

6. Class name of object: Human
Response: Large

7. Class name of object: Robot  
Response: Large

8. Class name of object: Cat  
Response: Medium

9. Class name of object: Airplane  
Response: Gigantic

Figure XXI. The query text for deducing the object’s size type in MLLM.
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