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This supplementary material is organized as follows:

* Appendix A: contains the implementation details and the
hyperparameters used to train our models.

* Appendix B: contains detailed comparison between early
and late fusion models.

* Appendix C: contains more details about scaling laws
derivation, evaluation and additional results.

* Appendix D: contains discussion about the paper limita-
tions.

* Appendix E: contains more results about MoEs and
modality specialization.

A. Experimental setup

In Table 2, we show the pre-training hyperparameters for
different model configurations used to derive the scaling
laws. The number of parameters ranges from 275M to 3.7B,
with model width increasing accordingly, while the depth
remains fixed at 24 layers. Learning rates vary by model
size, decreasing as the model scales up. Based on empir-
ical experiments and estimates similar to [10], we found
these values to be effective in our setup. Training is opti-
mized using a fully decoupled AdamW optimizer with mo-
mentum values 81 = 0.9, B2 = 0.95, and a weight de-
cay of le—4. The batch size is set to 2k samples, which
account for 2M tokens, given lk context length. Gradient
clipping is set to 1.0, with a maximum warmup duration
of 5k iterations, adjusted for shorter training runs: 1k and
2.5k warmup steps for models trained between 1k—4k and
5k—15k steps, respectively. For MoEs, we found that longer
warmup is significantly better, so we adopt a 2.5k warmup
for all runs under 20k steps. We use a constant learning
rate schedule with cooldown during the final 20% of train-
ing, gradually reducing to zero following an inverse square
root schedule. For vision processing, image inputs are di-
vided into (14, 14) patches, with augmentations including
Random Resized Crop (resizing images to 224px with a
scale range of [0.4, 1.0]) and Random Horizontal Flip with a
probability of 0.5. We train our models on mixture of inter-
leaved, image captions and text only data Table 1. For late
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fusion models, we found that using smaller learning rate for
the vision encoder significantly boost the performance Ta-
ble 4, and when both the encoder and decoder are initialized
(Appendix B.7) we found that freezing the vision encoder
works best Table 3.

Data type dataset #samples sampling prob.
DEFN [3] 2B 27%

Image-Caption COYO [2] 600M 11.25%
HQITP[13] 400M 6.75%

Interleaved Obelics [7] 141M Docs 45%
Text DCLM [8] 6.6T Toks 10%

Table 1. Pre-training data mixture. Unless otherwise specified,
the training mixture contains 45%, 45% and 10% of image cap-
tions, interleaved documents and text-only data.

B. Late vs early fusion

This section provides additional comparison between early
and late fusion models.

B.1. Scaling FLOPs

Figure 1 compares early-fusion and late-fusion models
when scaling FLOPs. Specifically, for each model size, we
train multiple models using different amounts of training
tokens. The performance gap between the two approaches
mainly decreases due to increasing model sizes rather than
increasing the number of training tokens. Despite the de-
creasing gap, across all the models that we train, early-
fusion consistently outperform late-fusion.

B.2. Changing the training data mixture

We analyze how the performance gap between early and late
fusion models changes with variations in the training data
mixture. As shown in Figure 3 and Figure 2, when fixing the
model size, increasing the ratio of text and interleaved data
favors early fusion. Interestingly, the gap remains largely
unchanged for other data types. We also observe interfer-
ence effects between different data types. Specifically, in-
creasing the amount of interleaved data negatively impacts
performance on image captions and vice versa. Addition-
ally, increasing the proportion of text-only data slightly im-
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Figure 1. Early vs late fusion: scaling training FLOPs. We compare early and late fusion models when scaling both the model size and
the number of training tokens. The gap decreases mainly due to scaling models size.
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Figure 2. Early vs late fusion: changing the training mixture. We vary the training mixtures and plot the final training loss. Early fusion
models become better when increasing the proportion of interleaved documents. Early and late fusion has 1.63B and 1.75B parameters

respectively.

proves interleaved performance but increases loss on im-
age captions. Overall, we find that text-only and interleaved
data are correlated across different setups.

B.3. Scaling image resolution is in favor of early-
fusion

We examine how both architectures perform with varying
image resolution. We fix the number of model parameters
to 1.63B and 1.75B for early and late fusion respecively. All
models are trained for 100K steps or 200B tokens. Since
the patch size remains constant, increasing the resolution
results in a higher number of visual tokens. For all reso-
lutions, we maintain the same number of text tokens. As
shown in Figure 4, the early-fusion model consistently out-
performs the late-fusion model across resolutions, particu-
larly for multimodal data, with the performance gap widen-
ing at higher resolutions. Additionally, we observe that the
loss on text and interleaved data increases as resolution in-
creases.

B.4. Early-fusion is consistently better when match-
ing the late-fusion model size

In this section, we compare the late-fusion model with dif-
ferent configurations of early-fusion one. Specifically, we
train early-fusion models that match the late-fusion model
in total parameters (Params), text model size (Text), and
FLOPs (FLOPs), assuming 45-45-10 training mixture. As
shown in Figure 5, early fusion consistently outperforms
late fusion when normalized by total parameters, followed
by normalization by FLOPs. When matching the text model
size, early fusion performs better at higher ratios of inter-
leaved data.

B.5. Different late-fusion configuration

We examine how this scaling changes with different late-
fusion configurations. Instead of scaling both the vision and
text models equally, as done in the main paper, we fix the
vision encoder size to 300M and scale only the text model.
Figure 6 shows that late-fusion models lag behind at smaller
model sizes, with the gap closing significantly as the text
model scales. This suggests that allocating more parameters
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Figure 3. Early vs late fusion: changing the amount of text-only data in the training mixture (isoFLOPs). We vary the ratio of
text-only data and plot the final training loss. The gap increases with the text data ratio in favor of early fusion model. Early fusion has

1.63B parameters and late fusion 1.75B parameters.

Early-fusion

Params 275M 468M 932M 1.63B 2.28B 3.35B
width 800 1088 1632 2208 2624 3232

depth 24

Learning rate 1.5e-3 1.5e-3 5e-4 4.2e-4 4e-4 3.5e-4
Late-fusion

Params 28O0M 494M 1B 1.75B 243B 3.7B

vision encoder width 384 512 768 1024 1184 1536

vision encoder depth 24

width 768 1024 1536 2048 2464 3072

depth 24

Learning rate 1.5e-3 1.5e-3 5e-4 4.2e-4 3.8e-4 3.3e-4
Early-fusion MoEs

Active Params 275M 468M 932M 1.63B 2.28B 3.35B
width 800 1088 1632 2208 2624 3232

depth 24

Learning rate 1.5e-3 1.5e-3 5e-4 4.2e-4 4de4 35e4

2.5B-600B
Fully decoupled AdamW [9]
B1=0.9,5, =0.95
0

Training tokens
Optimizer

Optimizer Momentum
Minimum Learning rate

Weight decay le-4
Batch size 2k
Patch size (14, 14)
Gradient clipping 1.0
MAXximum Warmup iterations Sk
Augmentations:
RandomResizedCrop
size 224px
scale [0.4, 1.0]
RandomHorizontalFlip p=20.5

Table 2. Pre-training hyperparameters We detail the hypera-
parmeters used for pre-training different model configurations to
derive scaling laws.

to shared components is more beneficial, further supporting
the choice of early-fusion models.

B.6. Different context lengths

In the paper, we use a 1k context length following [5]. Also
following, this paper, we ignore the context length effect, as
the model dimension dominates the training compute esti-
mate. Moreover, [11] empirically found that scaling coef-

Vision encoder Interleaved Image-Caption Text AVG AVG (SFT)

Ir scaler (CE) (CE) (CE) (CE) (Acc)
1 2.521 2.15 2.867 2513 43.49
0.1 2.502 2.066 2.862 2477 52.27
0.01 2.502 2.066 2.859 2.476 53.76
0.001 2.513 2.066 2.857 2.479 -

0 (frozen) 2.504 2.061 2.856 2.474 54.14

Table 3. Vision encoder scaler. Freezing the vision encoder
works best when initializing late-fusion models with pre-trained
models.

Vision encoder Interleaved Image-Caption Text AVG AVG (SFT)

Ir scaler (CE) (CE) (CE) (CE) (Acc)
0.1 2.674 2219 3.072 2.655 34.84
0.01 2.672 2.197 3.071 2.647 38.77
0.001 2.674 2.218 3.073 2.655 38.46

Table 4. Vision encoder scaler. Reducing the learning rate for
the vision encoder is better when training late-fusion models from
scratch.

ficients are robust to context length. Nevertheless, Our ini-
tial experiments (Figure 7) indicate that scaling the context
length did not significantly affect the comparison between
late and early fusion.

B.7. Initializing from LLM and CLIP

We study the case where both late and early fusion models
are initialized from pre-trained models, specifically DCLM-
1B [8] and CLIP-ViT-L [12] for late fusion. Interestingly,
Figure 8 shows that for text and interleaved multimodal
documents, early fusion can match the performance of late
fusion when trained for longer. However, closing the gap
on image caption data remains more challenging. Notably,
when considering the overall training cost, including that
of pre-trained models, early fusion requires significantly
longer training to compensate for the vision encoder’s pre-
training cost.
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Figure 4. Early vs late fusion: training with different image
resolutions (isoFLOPs). For the same training FLOPs we vary
the image resolution (and thus the number of image tokens) during
training and report the final training loss. Increasing resolution,
hurts the performance on text and interleaved documents, while
helping image captioning. The gap stays almost the same on text
and interleaved data while slightly increase on image captioning
in favor of early fusion.

C. Scaling laws
C.1. Fitting L = F(N, D)

Following [4], we determine the parameters that minimize
the following objective across all our runs %:

bniu;ﬂ Z Hubers (LSE (a — alog N;, b — Blog Dy, €) — log L;) ,
Z M
We perform this optimization across various initialization
ranges and select the parameters that achieve the lowest
loss across all initializations. Specifically, our grid search
spans {0,0.5,2.5} for « and S, {0, 5, 10, ..., 30} for a and
b, and {—1,-0.5,1,0.5} for e. We use the L-BFGS algo-
rithm with § = le — 3.

C.2. Fitting N o« C%, D o« C? D o« N

While these equations have a closed-form solution [4] for
early-fusion models that can be derived from ??, this is
not the case for late-fusion models without specifying ei-
ther the vision encoder or text model size. To ensure a
fair comparison, we derive these equations for both mod-
els, by performing linear regression in log space. We found
that the regression is very close to the coefficient found
with closed-form derivation Table 5. For instance, to derive
N = K,C*%, given a FLOP budget C' and a set of linearly
spaced tokens D, ranging from 10B to 600B, we compute
the model size for each D; as N; = % for early fusion and
N; = & 4 0.483 % N, for late fusion (for the 45-45-10
mixture, D,, = 0.544D, thus C' = 6D(0.544N,, + Ny)).
We then apply ?? to obtain the loss for each model size and
select N that has the minimum loss. We repeat this for all
FLOP values corresponding to our runs, resulting in a set
of points (C, No,¢) that we use to regress a and K,. We
follow a similar procedure to find b and d. For late-fusion
models, we regress a linear model to determine N, given

N. Notably, even though we maintain a fixed width ratio
for late-fusion models, this approach is more accurate, as
embedding layers prevent a strictly fixed ratio between text
and vision model sizes. We present the regression results in
Figure 9.

Model a b d n dn
Closed form  0.52649  0.47351 0.89938 1.11188 -0.05298
Regression  0.52391 0.47534 0.90052 1.10224 -0.04933

Table 5. Scaling laws parameters for early-fusion. Doing re-
gression to derive the scaling laws coefficients leads to very close
results to using the closed-form solution.

C.3. Fitting L « C°¢

To determine the relationship between the final model loss
and the compute budget C', we begin by interpolating the
points corresponding to the same model size and compute
the convex hull that covers the minimum loss achieved by
all runs for each FLOP. This results in a continuous map-
ping from the FLOPs to the lowest loss. We consider a
range of FLOPs, excluding very small values (< 3e!?), and
construct a dataset of (C, L) for linearly spaced compute
C. Using this data, we find the linear relationship between
L and C in the log space and deduce the exponent c. We
visualize the results in Figure 13.

C.4. Scaling laws for different target data type

In Figure 14, we derive the scaling laws for different tar-
get data types. In general, we observe that the model
learns image captioning faster than interleaved data, as in-
dicated by the higher absolute value of the scaling expo-
nent (e.g., 0.062 vs 0.046), despite using the same data ra-
tio for captioning and interleaved data (45% each). Addi-
tionally, we find that the model learns more slowly on text-
only data, likely due to the smaller amount of text-only data
(10%). Across model configurations, we find that early fu-
sion scales similarly to late fusion on image captioning but
has a lower multiplicative constant (49.99 vs 47.97). For
MoEs, the model learns faster but exhibits a higher multi-
plicative constant. On text and interleaved data, early and
late fusion models scale similarly and achieve comparable
performance. However, MoEs demonstrate better overall
performance while learning slightly more slowly.

C.5. Scaling laws for different training mixtures

We investigate how the scaling laws change when modify-
ing the training mixtures. Specifically, we vary the ratio
of image caption, interleaved, and text-only data and re-
port the results in Figure 15. Overall, we observe similar
scaling trends, with only minor changes in the scaling co-
efficients. Upon closer analysis, we find that increasing the
ratio of a particular data type in the training mixture, leads
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Figure 5. Early vs late fusion: changing the training mixture and early-fusion configuration. We vary the training mixtures and plot

the final training loss for different configuration of early fusion models. For the same number of total parameters early fusion consistently
outperform late fusion.
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Figure 9. Regression results of the scaling laws coefficients. our
estimation of the scaling coefficients is close to the closed form
solution.

to a corresponding increase in its scaling exponent. For in-
stance, increasing the ratio of image captions from 30% to
40% raises the absolute value of the exponent from 0.056
to 0.061. However, for text-only data, we do not observe
significant changes in the scaling coefficients when varying
its proportion in the training mixture.

Parameter MSE R2 MAE (%)
Held-in 0.0029 0.9807 0.8608
Held-out  0.0004 0.9682 0.5530

Table 6. Scaling laws prediction errors. We report the mean
square error, R2 and mean absolute error for the loss prediction
for held-in and held-out (8B model) data.

Model E o B a b d

Avg 1.80922 0.29842 0.33209 0.54302 0.48301 0.92375
Std 0.33811 0.10101  0.02892 0.08813  0.05787 0.23296

Table 7. Scaling laws sensitivity. We report the mean and stan-
dard deviation after bootstrapping with 100 iterations.

C.6. Scaling laws evaluation

For each model size and number of training tokens, we com-
pute the loss using the estimated functional form in ?? and

compare it to the actual loss observed in our runs. Figure 10,
Figure 11, and Table 6 visualizes these comparisons, show-
ing that our estimation is highly accurate, particularly for
lower loss values and larger FLOPs. We also assess our
scaling laws in an extrapolation setting, predicting perfor-
mance beyond the model sizes used for fitting. Notably, our
approach estimates the performance of an 8B model with
reasonable accuracy.

Additionally, we conduct a sensitivity analysis using
bootstrapping. Specifically, we sample P points with re-
placement (P being the total number of trained models)
and re-estimate the scaling law coefficients. This process
is repeated 100 times, and we report the mean and standard
deviation of each coefficient. Table 7 shows that our esti-
mation is more precise for S than for «, primarily due to
the smaller number of model sizes relative to the number of
different token counts used to derive the scaling laws.

C.7. Scaling laws for sparse NMMs.

Similar to dense models, we fit a parametric loss func-
tion (??) to predict the loss of sparse NMMs based on the
number of parameters and training tokens, replacing the to-
tal parameter count with the number of active parameters.
While incorporating sparsity is standard when deriving scal-
ing laws for MoEs [1, 6, 14], we focus on deriving scaling
laws specific to the sparsity level used in our MoE setup.
This yields coefficients that are implicitly conditioned on
the sparsity configuration.

We also experiment with a sparsity-aware formulation
of the scaling law as proposed in [1], and observe consis-
tent trends (Table 8). In particular, the exponents associated
with model size (V) are substantially larger than those for
training tokens (f3), reinforcing the importance of scaling
model size in sparse architectures. Additionally, we observe
that the terms governing the scaling of active parameters de-
compose into two components.

D. Discussion and Limitations

Scaling laws for multimodal data mixtures. Our scal-
ing laws study spans different model configurations and
training mixtures. While results suggest that the scaling
law coefficients remain largely consistent across mixtures, a
broader exploration of mixture variations is needed to vali-
date this observation and establish a unified scaling law that
accounts for this factor.

Scaling laws and performance on downstream tasks.
Similar to previous scaling law studies, our analysis focuses
on pretraining performance as measured by the validation
loss. However, the extent to which these findings translate
to downstream performance remains an open question and
requires further investigation.

Extrapolation to larger scales. The accuracy of scal-
ing law predictions improves with increasing FLOPs Ap-
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Figure 10. Observed vs predicted loss. We visualize the loss predicted by our scaling laws (??) and the actual loss achived by each run.
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Model E A B o B A6 v C d
L(N,D) (??) 2.158 381773 4659 0.710 0.372 - - - - -
L(N,D,S)[1] 1.0788 1 4660 0.5890 03720 02 0.2 0.70956 1.0788 381475
Table 8. Scaling laws for sparse native multimodal models.
Al 275M | have been widely adopted for late-fusion models, alterna-
| A64M e tive approaches may be necessary for early fusion. Given
932M L7 the similarity of early-fusion models to LLMs, it appears
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Figure 11. Observed vs predicted loss. We visualize the loss
predicted by our scaling laws ?? and the actual loss achieved
by each run. We can reliably predict the performance of mod-
els larger (8B params) than those used to fit the scaling laws.

pendix C. Furthermore, we validate our laws when extrap-
olating to larger model sizes (Appendix C.6). However,
whether these laws can be reliably extrapolated to extremely
large model sizes remains an open question.

High resolution and early-fusion models. Training early-
fusion models with high-resolution inputs leads to a signif-
icant increase in vision tokens. While pooling techniques

E. Mixture of experts and modality-specific
specialization

E.1. MoEs configuration

We experiment with different MoEs configuration by
changing the number of experts and the top-k. We report
a sample of these experiments in Table 9.

E.2. MoEs specialization

We investigate multimodal specialization in MoE architec-
tures. We compute a specialization score as the average
difference between the number of text/images tokens as-



Accuracy CIDEr
AVG VQAvV2 TextVQA OKVQA GQA VizWiz COCO TextCaps
4-E-top-1 40.0552 64.068 14.284 41.948 61.46 18.516 62.201 34.08
8-E-top-1 41.6934 65.684 17.55 42.908 63.26 19.065 67.877 39.63
8-E-top-2 42.8546 66.466 19.162 45.344 63.94 19.361 65.988 41.649
8-E-top-2 finegrained 39.904 62.76 15.58 41.88 61.6 17.7 57.52 35.42

Table 9. SFT results with different MoEs configurations. .
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Figure 12. Modality-specific specialization. We visualize the
experts specialization to text and image modalities. Models are
evaluated on Obelics.

signed to each expert and a uniform assignment (1/E). Ad-
ditionally, we visualize the normalized number of text and
image tokens assigned to each expert across layers. Fig-
ure 12 shows clear modality-specific experts, particularly in
the early layers. Furthermore, the specialization score de-
creases as the number of layers increases but rises again in
the very last layers. This suggests that early and final lay-
ers require more modality specialization compared to mid-
layers. Additionally, we observe several experts shared be-
tween text and image modalities, a phenomenon not present
in hard-routed or predefined modality-specific experts.
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Figure 14. Scaling laws for native multimodal models. From top to bottom: late-fusion (dense), early-fusion (dense) and early-fusion
MokEs. From left to right: cross-entropy on the validation set of image-caption, interleaved and text-only data.
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Figure 15. Scaling laws for early-fusion native multimodal models. Our runs across different training mixtures (Image-caption-
Interleaved-Text) and FLOPs. We visulize the final validation loss on 3 data types: HQITP (left), Obelics (middle) and DCLM (right).



