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Supplementary Material

A. CutS3D Qualitative Results
We show more qualitative examples of predictions from our
CutS3D detector and compare it to other competitive meth-
ods in a zero-shot manner in Figure 1 and Figure 3. Our ap-
proach shines for challenging examples with instances that
are connected in 2D, such as the person holding the child or
the baseball players standing together. The CutS3D CAD
is also able to detect more instances, such as the additional
zebra or the additional human at the bottom.

B. Further Ablations
B.1. Spatial Importance Lower Bound
We further ablate the effect for lower bound β for our Spa-
tial Importance maps for the performance of our method.
For this, we adopt the same evaluation protocol as in the
main paper, i.e. we train our model only once on the gen-
erated ImageNet [9] pseudo-masks. To isolate the effect of
β, we train our model without Spatial Confidence. Table 1
reports the results on COCO val2017 [6] for β variations.

β 0.3 0.45 0.6

APmask 8.5 8.5 8.3

Table 1. Different values for β.

SCmin
ij 0.5 0.67 0.83

APmask 9.1 9.0 9.0

(a) SC Lower Bound.

With Without

APmask 9.1 9.1

(b) SC Maps Mask-Alignment.

Table 2. Further Ablations of our Spatial Confidence Components.

Contribution APmask

CutLER 9.4
+ SIS 9.6
+ LocalCut 9.8

(a) Spatial Importance Sharpening

Confidence APmask

No Conf. 9.8
CRF 10.0
Depth 10.2

(b) Depth vs CRF Confidence

Table 3. Applying Spatial Importance Sharpening without Local-
Cut & CRF scores as confidences.

B.2. Spatial Confidence Lower Bound
In Table 2a, we explore setting different values as lower
bound for our spatial confidence map. As minimum, we set
0.5 and consecutively add 1/6 ≈ 0.17 since we make cuts
at 6 different thresholds. We find that our approach yields
the best results at SCmin

ij = 0.5.

CutS3D (Ours)CutLER CuVLER

Figure 1. More Qualitative Results. We show COCO val2017 [6]
predictions of our CutS3D zero-shot model and compare to zero-
shot competitors, namely CutLER [11] and CuVLER [1]. Overall,
we observe that the CutS3D Cascade Mask R-CNN [3] is able to
better differentiate instances that are connected in 2D, e.g. located
together in groups. On the other hand, the other two models often
fail to separate such instances.

B.3. Spatial Confidence Mask Alignment

In an additional experiment, we investigate the effect of
aligning the spatial confidence maps to pixel precision with
further refinement instead of patch resolution. Using the
two different resolutions for our spatial confidence soft tar-
get loss results in two different learning principles: While
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COCO 24.3 12.5 13.3 3.7 13.9 31.0 6.9 20.8 30.2 20.8 9.8 10.7 2.3 9.5 27.0 6.1 17.8 24.2
COCO20K 24.6 12.6 13.4 4.0 14.0 30.7 6.9 20.9 30.4 21.3 9.9 10.9 2.4 9.9 26.7 6.1 17.8 26.7
LVIS 8.8 4.2 4.8 2.3 8.8 15.7 2.4 9.9 17.9 7.1 3.6 3.9 1.4 5.7 13.8 2.2 8.5 14.6
VOC 40.8 19.8 21.4 1.2 7.6 33.7 16.5 33.9 41.7 - - - - - - - - -
Objects365 23.6 11.2 12.4 2.7 11.0 22.5 3.2 16.5 30.8 - - - - - - - - -
KITTI 21.1 7.6 9.7 0.1 5.7 22.9 7.0 17.5 25.3 - - - - - - - - -

In
-D

om
ai

n COCO 24.7 12.5 13.3 3.6 13.4 29.8 6.7 21.1 31.5 21.8 10.4 11.4 2.5 10.5 27.5 6.1 19.0 27.0
COCO20K 25.1 12.5 13.3 3.9 13.6 29.6 6.7 21.3 31.7 22.4 10.7 11.6 2.9 10.8 27.3 6.2 19.1 27.2
LVIS 9.6 4.6 5.2 2.5 8.9 15.3 2.4 10.4 29.5 8.1 4.1 4.5 1.9 6.5 14.2 2.3 9.5 17.2

Table 4. Full Results. We report performance metrics for ”Zero-Shot” and ”In-Domain” settings for all datasets.

Model APmask
50 APmask

ZoeDepth [2] 20.81 10.70
Kick Back & Relax [10] 20.72 10.69

Table 5. 3-Round Self-Training with Different Depth Models.
Our model fully trained with depth from ZoeDepth or Kick Back
& Relax.

the coarse spatial confidence map encodes boundary confi-
dence within a region, the refined map specifies exact bor-
ders with confidence. The detector either discovers or ad-
justs mask borders based on confidence. In Table 2b, we
find both approaches result in equal performance, rendering
further refinement an unnecessary computational.

B.4. Effect of Spatial Importance Sharpening
In our method, we apply spatial importance sharpening
(SIS) on the fully-connected feature graph before anything
is cut. The goal of SIS is to sharpen the feature similarities
of this fully-connected graph in areas where the edges are
in the depth map. The intuition behind this is to increase the
discriminatory effect of the feature similarities where they
are the most important. Only adding SIS improves perfor-
mance, as shown in Table 3a with a model trained on masks
with only SIS applied for the semantic cut. We see LocalCut
benefits from SIS on the semantic cut. Adding LocalCut in
3D now adds +0.2 (Table 3a) instead +0.1 without SIS (as
shown in the main paper ablation).

B.5. Confidence from CRF
We experiment with using soft masks from an alternative
sources. Table 3b compares confidence from the CRF out-
put vs. Spatial Confidence from depth. We find that using
the CRF only slightly improves over not using any confi-
dence. The results underline the value of deriving Spatial
Confidence from 3D. A standalone object has high confi-
dence, whereas for a candidate mask in an object group, the
optimal 3D cut is less certain.

B.6. Extended Depth Sources Ablation
We extend our depth sources ablation in the main paper of
employing a self-supervised depth estimator, i.e. Kick Back

Method APbox APbox
50 APbox

75

MaskCut† [11] 8.4 15.0 8.0
+ Ours 11.0 21.4 10.0

Table 6. Pseudo-Mask Evaluation on ImageNet. We evaluate
the generated pseudo-masks on the ImageNet validation split [9]
for our baseline, MaskCut, and with our pseudo-mask contribu-
tions added (+ Ours). †Results reproduced using the authors’ offi-
cial implementation. Since they do not provide pseudo-mask eval-
uation code, we use our own implementation only for this.

& Relax [10] that is trained on videos without any depth
data. We now perform 3-round self-training on the model
already shown in the main paper, and, in Table 5, present
that it also achieves SOTA performance on COCO val2017,
quasi-matching the model trained with ZoeDepth.

B.7. Pseudo Mask Evaluation
To train our CutS3D models, we first extract pseudo-masks
on the ImageNet [9] training split. Since ImageNet is a
dataset that is mainly used for classification tasks, it lacks
precise annotations for instance masks. Nevertheless, it
comes with bounding box annotations, but those are con-
strained to one box per image. In an attempt to capture the
abilities of our approach to extract a useful instance signal
on ImageNet, we evaluate the our pseudo-mask extraction
pipeline on the ImageNet validation split and report unsu-
pervised object detection results in Table 6. To produce the
numbers for our baseline, we use the official author imple-
mentation for CutLER [11]for their pseudo-mask process
called MaskCut. Both approaches use DiffNCuts [7] for
feature extraction. As can be observed, our method scores
higher across several metrics. This pseudo-mask advantage
is also reflected in our presented results in the paper, where
our trained CAD outperforms the baseline, CutLER [11],
with fewer self-training iterations.

C. Full Results

In addition to our results presented in the main paper, we
report all metrics for the evaluated datasets in Table 4. This
also includes instance-size specific and recall metrics.



D. Further Visualizations
D.1. Pseudo-Mask Failure Cases
While many of our generated pseudo-masks provide a rea-
sonable segmentation of the instances in the scene, in some
cases the predicted masks can be faulty or imprecise. Com-
mon cases are when objects are positioned next to each
other with no discernible 3D boundary or simply when the
initial semantic cut fails to find an instance. We therefore
show examples of failure cases in Figure 2.
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Figure 2. Pseudo-Mask Failure Cases. Our CutS3D pseudo-
mask approach can struggle for objects with no discernable 3D
boundary, such as the two birds sitting next to each other.

D.2. Depth Map Comparison
Our ablations in the main paper show that all evaluated
zero-shot monocular depth estimators are suitable for our
approach. Therefore, as part of Figure 4, we show exam-
ples of predicted depth maps for all three models, namely
ZoeDepth [2], Marigold [5], and Kick Back & Relax [10].
Similar to the quantative evaluation, we observe that the
depth maps from all three models are of similar high quality
across a variety of scenes.

D.3. Spatial Importance Maps
As the contribution ablation reveals, sharpening the seman-
tic affinity graph with Spatial Importance maps greatly im-
proves the performance of our method. Therefore, we show
further examples of Spatial Importance maps as part of Fig-
ure 5. As can be observed, our Spatial Importance maps ex-
tract areas of high-frequency depth changes from the depth
maps across various scenes.

E. Method Details
E.1. Pseudo-Mask Extraction
We detail our hyperparameters for pseudo-mask and Spatial
Confidence map extraction in Table 7. We perform 3 iter-

ations to identify instances. To extract Spatial Confidence,
we linearly sample 6 variations of τknn. For our main re-
sults, we extract depth from ZoeDepth [2] and features from
DINO [4] or DiffNCuts [7].

Parameter Value

N 3
τNCut 0.13
τknn 0.115
τmin

knn 0.05
β 0.45
T 6
Depth Model ZoeDepth [2]

Backbones ViT-B/8 (DINO)
ViT-S/8 (DiffNCuts)

Table 7. Pseudo-Mask Extraction Hyperparameters. We report
the hyperparameters used for our LocalCut, Spatial Importance
and Spatial Confidence processes.

E.2. Initial Pseudo-Mask Training

We report the hyperparameters used for the initial training
of the Cascade Mask R-CNN on the pseudo-masks gener-
ated from ImageNet in Table 8. For training the model, we
largely follow the standard settings from CutLER [11] and
train for 160K iterations. Due to additional memory needs
from the Spatial Confidence maps, we reduce our batch size
to 4. For our ablations without spatial confidence, we in-
crease it to 8. Like CutLER [11], we scale the copy-pasted
masks between 0.3 and 1.0 to vary the resulting size of
copied instances. We also initialize the model backbone
from DINO [4] weights.

Component Value

Detector Cascade Mask R-CNN [3]
Batch Size 4
Base Learning Rate 1e−2

Optimizer SGD
Momentum 0.9
Weight Init. DINO [4]
Warmup Iterations 1K
Total Iterations 160K
Copy-Paste Min. Ratio 0.3
Copy-Paste Max. Ratio 1.0

Table 8. Initial Pseudo-Mask Training Cascade Mask R-CNN
Hyperparameters. We detail hyperparameters used for training
the CAD on the generated pseudo-masks.



E.3. Self-Training
We further conduct self-training with the predicted masks
from the initially trained Cascade Mask R-CNN and report
our hyperparameters in Table 9. Since the CAD trained on
the initial pseudo-masks cannot predict Spatial Confidence
maps for self-training, we no longer have additional mem-
ory needs and hence increase the batch size to 8. Further,
we find the model converges after 80K iterations, partly due
to its weights being initialized from the previously trained
CAD. We further increase the minimum scale for copy-
paste augmentation to 0.5. Different from CutLER [11],
we only conduct 1 round of self-training, saving computa-
tional costs. For further in-domain self-training on COCO,
we keep our settings largely the same and mainly reduce the
total iterations to 14K since COCO is considerably smaller
in size than ImageNet. We will provide configuration files
for all our trainings as part of the code release after accep-
tance.

Component Value

Detector Cascade Mask R-CNN [3]
Batch Size 8
Base Learning Rate 5e−3

Optimizer SGD
Momentum 0.9
Weight Init. Previous Training
Self-Training Rounds 1
Warmup Iterations 1K
Total Iterations 80K
Copy-Paste Min. Ratio 0.5
Copy-Paste Max. Ratio 1.0

Table 9. IN1K Self-Training Cascade Mask R-CNN Hyperpa-
rameters. We report hyperparameters used for performing self-
training of our CAD.
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Figure 3. More Qualitative Results. We show further qualitative results on COCO val2017 from our zero-shot model and compare them
to other zero-shot competitors for a fair comparison.
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Figure 4. Comparison of Different Monocular Depth Estimators. Our visualizations qualitatively compare the depth maps predicted by
ZoeDepth [2], Marigold [5], Kick Back & Relax [10] and MiDaS [8].
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Figure 5. Spatial Importance Examples. We show Spatial Importance maps generated from depth maps predicted by ZoeDepth [2].
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