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Supplementary Material

In this supplementary material, we provide (1) a de-

scription of loss functions for training our feedforward

model (Sec. A); (2) additional results on 6D pose estima-

tion (Sec. B); (3) an analysis of runtime and complexity

(Sec. C); (4) experiments and discussion on sensor interfer-

ence (Sec. D); and (5) additional visualization of our results

on 6D pose estimation (Sec. E).

For sections, figures and equations, we use numbers

(e.g., Sec. 1) to refer to the main paper and capital letters

(e.g., Sec. A) to refer to this supplement.

A. Training Loss of Feedforward Models

A.1. 6D Pose Estimation

As described in Sec. 4.2, we utilize one of two losses to train

the feedforward model depending on if the object is sym-

metrical. For non-symmetrical objects, we utilize a combi-

nation rotation, translation, and point matching loss. Given

a ground truth object rotation Rgt (represented by the 6D

representation proposed by [51]) and translation tgt. Given

a set of 3D points xi on the object, the loss of the predicted

rotation R and translation t is given by:

L = λrLrot + λtLtrans + λpLpm

where the loss terms are given by

Lrot = ∥R−Rgt∥1,

Ltrans = ∥t− tgt∥1,

Lpm =
1

N

N∑

i=1

∥(Rxi + t)− (Rgtxi + tgt)∥2

We set λr = 1.0, λt = 0.5, λp = 0.1 for our experiments.

For symmetric objects, we use ADD-S loss introduced

in [47], where X represents the set of object points:

LADD−S =
1

N

N∑

i=1

min
xj∈X

∥(Rxi + t)− (Rgtxj + tgt)∥2

A.2. Spherical Object Recovery

For spherical object recovery (Sec. 5.1), the scene is param-

eterized by the center point c ∈ R
3 and diameter d. Our

loss function is a simple combination of error in the two

components:

L = ∥c− cgt∥+ λ|d− dgt|

We set λ = 1 for our experiments.

A.3. Human Hand Pose Estimation

For hand pose estimation (Sec. 5.2), we predict the MANO

model [36] shape parameters β, pose parameters θ, global

3D rotation R (represented by the 6D representation pro-

posed by [51]), and global 3D translation t. The loss for a

given prediction is given by:

L = λsLshape + λpLpose + λrLrot

+ λtLtrans + λjLjoint + λvLvertex

where the loss terms are given by

Lshape = ∥β − βgt∥1,

Lpose = ∥θ − θgt∥1,

Lrot = ∥R−Rgt∥1,

Ltrans = ∥t− tgt∥1,

Lj = ∥(RMj(β,θ) + t)− (RgtMj(βgt,θgt) + tgt)∥2,

Lv = ∥(RMv(β,θ) + t)− (RgtMv(βgt,θgt) + tgt)∥2

Where Mj is the MANO model that outputs joint keypoint

positions, and Mv is the MANO model that outputs mesh

vertex positions. We set λs = 0.1, λp = 0.1, λr = 1.0,

λt = 1.0, λj = 0.1, λv = 0.1 for our experiments.

B. Additional 6D Pose Estimation Experiments

B.1. Data Visualization

We visualize the transient histograms captured by multi-

ple, distributed ToF sensors across two different 3D scenes

in Fig. A. The measurement has a complex relationship

with scene geometry. We aim to solve the inverse prob-

lem (multi-view transient histogram → geometry) for sim-

ple parametric scenes.

Scene 1 Scene 2
Scene 1

Scene 2
ToF Histograms
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Figure A. Transient histograms from multiple viewpoints along-

side corresponding 3D scenes.

B.2. Fine­Tuning on Real Data

We investigate the effects of fine-tuning our feedforward

model on real data. To do so, we capture 80 additional

measurements of the matte white “2” object used in prior



AUC-ADD (↑)

Training Data Feedforward FF + Refiner

Fully Sim. 74.67 83.47

Finetune on Real 86.16 90.36

Table A. Results of fine-tuning the 6D pose estimation method on

real data, over 25 measurements of the “2” object.

Figure B. “2” objects with different reflectance properties used in

the varying scene reflectance experiment (Sec. B.3. From left to

right: matte white, glossy white, and spotted black and white.

experiments, and fine-tune the model trained on simulated

data on these measurements. We leave the refiner unmodi-

fied.

The results of the fine-tuning experiment are presented

in Tab. A. We see a significant improvement in the perfor-

mance of the feedforward network. We also see a signifi-

cant improvement in the result after refinement due to the

improved starting estimate from the feedforward network.

These results are encouraging as they indicate that a min-

imal amount of real-world data could improve the perfor-

mance of our method.

B.3. Varying Scene Reflectance

The transient is a product of scene geometry and re-

flectance, so scenes of varying reflectance could affect the

performance of our method. We conduct a systematic test

in which we modify the reflectance properties of the 3D

printed digit “2” and the tabletop surface. We test “2” ob-

jects with three surface finishes, as shown in Fig. B. We test

two table materials: matte white and matte black.

The results of varying surface properties are presented in

Tab. B. A modest decline in performance is observed with

the glossy white object and the matte black tabletop, while

a significant drop in performance occurs with the spotted

black-and-white object. We attribute this drop to the fact

that the spotted object has strong low-frequency variations

in albedo across the surface. This sort of albedo variation is

not included in our domain randomization when generating

simulated data, nor is it able to be modeled by our refiner.

B.4. Varying Ambient Light

We evaluate the performance of our method under varying

levels of ambient lighting in Tab. C, on a new set of 10 cap-

tures of the “2” object at each light level. We see consistent

AUC-ADD (↑)

Obj. Material Table Material FF FF + Refiner

Matte White Matte White 74.67 83.47

Matte White Matte Black 66.59 79.55

Glossy White Matte White 69.86 77.74

Spotted B/W Matte White 50.46 61.49

Table B. 6D Pose Estimation of the “2” object with varying object

and tabletop surface reflectance.

Ambient Light Level AUC-ADD(↑) AUC-ADD-S(↑)

< 0.1 lux 65.69 90.47

300 lux 72.45 93.10

3000 lux (heavy IR) 25.45 26.53

Table C. 6D Pose Estimation of the “2” object under varying levels

of ambient illumination.
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Figure C. Effect of adding Gaussian error to sensor poses on the

“2” pose estimation task before feeding into our method.

performance in darkness (<0.1 lux) and the same indoor

lights as used in other captures (300 lux), but a heavy falloff

in performance under a very bright halogen spotlight (3000

lux), which emits high amounts of infrared light, leading

to a high DC offset in the transient histogram. This per-

formance drop is expected as we assume negligible ambi-

ent light in both synthetic data generation and the refiner.

Future work could aim to alleviate this problem by includ-

ing ambient light level in domain randomization to make

the feedforward network more robust, pre-processing his-

tograms to mitigate the effect of ambient light, and/or opti-

mizing for ambient light level in the refiner.

B.5. Sensitivity to Inaccuracy in Sensor Pose

When generating synthetic data to train our method, we add

random Gaussian noise to the simulated sensor position to

increase robustness to real-world inaccuracies in sensor po-

sition. We perform a simulated experiment to test this ro-

bustness, the results of which are shown in Fig. C. Both the

feedforward model and refiner are robust to modest varia-

tions in sensor pose (< 1cm), which are likely achievable

in realistic settings. We find that the feedforward method is

more robust to variations than the refiner, and when there is

high variation in sensor pose, foregoing the refiner leads to

higher accuracy in the recovered object pose.



AUC-ADD (AUC-ADD-S) (↑)

Number of Views Feedforward FF+Refiner

5 Pixels (Views) 74.79 (90.34) 74.80 (90.34)

10 Pixels (Views) 78.29 (90.57) 78.07 (90.63)

15 Pixels (Views) 84.65 (91.27) 84.79 (91.66)

25 Pixels (Views) 87.48 (91.51) 87.40 (91.42)

50 Pixels (Views) 90.54 (94.33) 90.87 (94.59)

100 Pixels (Views) 91.47 (94.58) 91.49 (94.37)

Table D. 6D Pose Estimation with Different Numbers of Views.

AUC-ADD (↑)

Ablation Feedforward FF + Refiner

Full Model 73.67 83.47

Idealized Jitter Kernel 22.64 24.50

Incorrect Bin Size 49.98 33.23

Incorrect FoV 29.70 44.22

Table E. Results of 6D Pose Estimation under varying sensor

model ablations, over a dataset of 25 captures of the “2” object.

B.6. Sensor Model Ablation Study

We perform an ablation study over key components of our

sensor model as described in Sec. 3.1. We consider the fol-

lowing variants:

1. Full: The full sensor model as described in Sec. 3.1 and

used for all previous experiments.

2. Idealized Jitter Kernel: The jitter kernel s is replaced

by a Dirac delta function at the location of the peak of s.

3. Inaccurate Bin Size: The temporal bin size ∆t of the

transient histogram is ∼10% smaller than as calibrated

(from 1.38cm to 1.2cm).

4. Inaccurate FoV Size: The angular size of the FoV is in-

correct by ∼ 20%, increasing from 32◦ to 38◦. Addition-

ally, the intensity map I(ω) is replaced with a constant

function.

For each variant, we train a feedforward model on syn-

thetic data generated with the ablated sensor model, and use

the same ablated sensor model in our refiner. Results over

the 25-pose “2” digit dataset are shown in Tab. E. The re-

sults demonstrate that each of these aspects of sensor mod-

eling are important to achieve good performance.

C. Runtime and Complexity Analysis

While our method foregoes some computation performed

by traditional methods (e.g. peak finding and ICP), it is re-

placed by relatively costly neural network inference and it-

erative pose refinement. Therefore we do not foresee effi-

ciency improvements compared to point cloud-based meth-

ods. One feed-forward pass of our network takes ∼4.8 ms.

The (unoptimized) refiner takes ∼2 seconds. With attention

paid to efficiency, refiner speed could likely be increased.

The costs of both the forward pass and optimization scale

linearly with the number of viewpoints.
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Figure D. Visualization of the laser intensity function I(ω) that

we use for the TMF8820 sensor, as given by Eq. (9). We set K1 =
0.88, K2 = −3.16, K3 = 250.51.
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(a) Sensor configuration for interference experiment 1.
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Data captured from center sensor
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(b) Sensor configuration for interference experiment 2.

Figure E. Sensor configurations used for interference experiments.

D. Test of Between-Sensor Interference

In our prototype system, a single sensor is moved to multi-

ple positions while the scene remains static. However many

practical applications for our method may involve multiple

sensors imaging the scene at the same time, which could

lead to interference between sensors. We perform con-

trolled experiments to investigate the effect of interference.

D.1. Two Sensors Facing Each Other

We position two AMS TMF8820 sensors facing directly at

each other at a distance of 6cm, as illustrated in Fig. Ea. We

compare measurements captured by sensor A between two

conditions: sensor B on and sensor B off. The raw and nor-
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Figure F. Comparison of the histograms captured in interference

experiment 1. Each plot shows 128 sensor measurements overlaid.

About 90% of samples in the right column exhibit no interference

artifacts, comprising the dark orange lines.
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Figure G. Comparison on the histograms captured in interference

1, with the light source of sensor A covered. Each plot shows 128

sensor measurements overlaid. About 90% of the samples in the

right column exhibit no interference artifacts, comprising the dark

orange line.

malized histograms for both conditions are shown in Fig. F.

We find that the operation of sensor B causes an effect in the

histogram captured by sensor A ∼ 10% of the time. Even

after normalization, the effect is still present. This effect ap-

pears similar to the effect caused by ambient light [13], and

is consistent with what we would expect to see if sensor B’s

light source is not correlated with the light source of sen-

sor A; i.e., because the laser pulse trains of the two sensors

are not synchronized, sensor B’s operation leads to photons

arriving uniformly at any time relative to sensor A’s pulse

train, just as ambient light arrives uniformly.

To further validate this hypothesis, we perform another

test using the same sensor configuration in which the laser
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(c) Histogram of values of bin 26 (the peak) for the ”Other Sensors On”

condition. The bin values are grouped together in about 75% of measure-

ments.

Figure H. Comparison of the histograms captured in interference

experiment 2.

light source of sensor A is covered, so that only ambient

light and the effect of sensor B are captured by sensor A.

The results of this experiment are shown in Fig. G. In this

case we can clearly see interference manifest as a DC offset

in the captured histogram, again matching the signature of

ambient light.

D.2. Nine Sensors Imaging a Plane

We perform a second experiment in which nine sensors are

all operating simultaneously and imaging the same portion

of a planar surface. The experimental setup is illustrated

in Fig. Eb. We position the sensors such that the centers

of their optical axes each intersect with a planar surface at

the same point, and record data only from the center sen-

sor. Again, we compare between two conditions: the other

8 sensors on, and the other 8 sensors off. The results of this

experiment are shown in Fig. H. We see the same effect as



in the previous experiment, but with a slightly higher occur-

rence rate of ∼ 25%.

D.3. Discussion: Between­Sensor Interference

We have demonstrated that, at least for the AMS TMF8820

sensor, the effect of interference between sensors happens

only occasionally even in the worst case. In practical sce-

narios, the rate of interference is likely to be quite low (i.e.

< 10%). Further, the effect of interference on the histogram

appears to be similar to the effect of ambient light. Ad-

justing captured histograms to account for ambient light is

a well-studied problem [13], and it is likely that methods

which are robust to changes in ambient light will be robust

to between-sensor interference. While future applications

should take interference into account, we believe it is un-

likely to be a major obstacle for future deployments of dis-

tributed miniature ToF sensors.

E. Visualization of 6D Pose Results

We provide visualization of our results on 6D pose estima-

tion in Figures J to R.
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Figure I. Objects used for 6D pose estimation experiments.
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Figure J. Visualization of results on the 3D printed “two” object.
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Figure K. Visualization of results on the 3D printed “L” object.
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Figure L. Visualization of results on the 3D printed “bunny” object.
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Figure M. Visualization of results on the 3D printed “P” object.
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Figure N. Visualization of results on the 3D printed “armadillo” object.
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Figure O. Visualization of results on the “chips” object from the YCB dataset.
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Figure P. Visualization of results on the “crackers” object from the YCB dataset.
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Figure Q. Visualization of results on the “mustard” object from the YCB dataset.
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Figure R. Visualization of results on “SPAM” object from the YCB dataset. The SPAM is a failure case for our method due to its specular

surface, small size, and many near-symmetries which make optimization difficult.


