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In this supplementary material, we provide more exper-
iments, discussions, and other details that could not be in-
cluded in the main text due to the lack of pages. The con-
tents are summarized below:

» Sec. S1: More comparisons to state-of-the-art meth-

ods.

» Sec. S2: Rendered avatars in the canonical space.

* Sec. S3: More ablation studies.

» Sec. S4: Limitations of the proposed PERSONA.

S1. Comparisons to state-of-the-art methods

Running time comparison. Tab. S1 further highlights that
PERSONA achieves real-time rendering speeds, whereas
existing diffusion-based methods suffer from slow infer-
ence. All running times were measured under the same
hardware setup using a single RTX A6000.

User study. Fig.S| presents results from our user study,
where participants strongly preferred our approach over ex-
isting diffusion-based methods. We conducted the study
with 40 participants, each answering 10 questions in which
they selected the image that best matched the input sin-
gle image. The compared methods included Champ [7],
MimicMotion [6], StableAnimator [5], and our PERSONA.
Fig. S2 provides an example from the study, with (a), (b),
(¢), and (d) corresponding to MimicMotion [6], Champ [7],
our PERSONA, and StableAnimator [5], respectively.
Qualitative comparisons. Fig.S3 compares our PER-
SONA with 3D-based state-of-the-art methods[2, 3]. PER-
SONA achieves more accurate pose-driven deformations
with more stable and consistent renderings.  Fig.S4
compares PERSONA with diffusion-based methods[5-7],
where our method better preserves the subject’s identity
from the input image, resulting in more authentic avatars
while still accurately modeling pose-driven deformations.

Methods Frames per second
Champ [7] 0.88
MimicMotion [6] 0.36
Stable Animator [5] 0.24
PERSONA (Ours) 25.56

Table S1. Frames per second comparisons of various human ani-
mation methods.
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Figure S1. User preference study results from 40 participants.

2. Which option—(a), (b), (c), or (d}—most closely matches the leftmost
reference image, considering all human features, including the face?
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Figure S2. An example of our user study.
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(a) Input image (b) AniGS (c) LHM (d) PERSONA (Ours)
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Figure S3. Comparison of state-of-the-art 3D-based methods [2, 3] and our PERSONA.
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(a) Input image (b) Target pose (c) Champ (d) MimicMotion (f) PERSONA (Ours)

Figure S4. Comparison of state-of-the-art diffusion-based methods [5—7] and our PERSONA.



S2. Avatars in canonical space

Fig. S5, S6, and S7 showcase various avatars created
from a single input image. These avatars are rendered in
canonical space without applying our pose-driven deforma-
tions. Despite being constructed from just a single image,
the avatars achieve high-quality renderings from multiple
viewpoints, including fully invisible regions, without no-
ticeable artifacts. These results highlight the effectiveness
of our avatar creation pipeline.
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(a) Input image (b) Avatars in the canonical space

Figure S5. The input image and rendered avatars in the canonical space from multiple viewpoints.
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(a) Input image (b) Avatars in the canonical space

Figure S6. The input image and rendered avatars in the canonical space from multiple viewpoints.
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(a) Input image (b) Avatars in the canonical space

Figure S7. The input image and rendered avatars in the canonical space from multiple viewpoints.



S3. Ablation studies

Balanced sampling. Fig. S8 demonstrates the effective-
ness of our 1:1 ratio between the input image and generated
frames in balanced sampling. Reducing the use of the in-
put image leads to a loss of authenticity and sharpness in
the rendering, which is expected due to the inconsistent tex-
tures in the generated frames.

Loss weights for geometry-weighted optimization.
Tab. S2 shows that using a high image loss weight (first
row) significantly degrades rendering quality. This issue is
mitigated by lowering the image loss weight (second row).
However, further reducing it slightly harms rendering qual-
ity (third row), indicating the need for a balanced trade-off.
Pose-driven deformations. Tab. S3 demonstrates that our
pose-driven deformation not only improves photometric
metrics (as shown in Tab. 2 and 3 of the main manuscript)
but also enhances geometry quality. Mask, depth, and nor-
mal metrics are measured as intersection-over-union, L1
distance between rendered and ground truth depth maps af-
ter aligning global translation, and the angular difference
between rendered and ground truth normal maps, respec-
tively.

Variants in pre-processing stages. Tab. S4 and Tab. S5
show how different training video generators (Sec. 4 of
the main manuscript) and geometry estimators (Sec. 5.2
of the main manuscript) affect the final rendering quality.
As shown in the tables, the choice of generator or the use of
lighter geometry estimators has only a marginal impact on
rendering quality. In particular, since we use enough num-
ber of generated frames (approximately 1K) for optimiz-
ing PERSONA, the geometric estimation errors from lighter
models such as Sapiens [1] do not significantly degrade the
final output.

S4. Limitations

Lack of dynamics. Despite its ability to represent pose-
driven deformations, PERSONA cannot capture motion-
dependent dynamics, which rely on velocity and acceler-
ation. These dynamics are crucial for modeling complex
deformations in loose-fitting clothing and hair. While we
attempted to incorporate velocity and acceleration as addi-
tional inputs, our 3D avatar representation lacks separate
layers for garments and hair, leading to unsatisfactory re-
sults. We believe that designing separate layers for gar-
ments and hair could be an interesting direction for future
research.

Lack of fine-grained cloth wrinkles. Additionally, PER-
SONA struggles to capture fine, pose-dependent wrinkles
in clothing, likely due to the lack of 3D consistency in
diffusion-generated videos, which hinders accurate geom-

(a) Input image  (b) 1:1 ratio (Ours)

(c) 1:2 ratio (d) 1:3 ratio (d) 1:4 ratio

Figure S8. Rendering comparisons with different input image-to-
generated frame ratios in balanced sampling. For a clearer com-
parison, avatars are rendered using the viewpoint and pose of the
input image.

Geo. weight Img. weight | PSNRT  SSIMT  LPIPS]
1 1 28.18 0.969 0.030
1 0.1 29.20 0.974 0.021
1 0.01 29.00 0.970 0.023

Table S2. Effect of loss weights in our geometry-weighted op-
timization on the NeuMan test set. The second row (in bold) is
ours.

Settings MasktT  Depth] Normal|
Wo. pose-driven deform. 88.60 47.17 22.07
W. pose-driven deform. (Ours) 90.06 46.13 21.73

Table S3. Effectiveness of our pose-driven deformations on the
X-Humans [4] test set. Units for mask, depth, and normal are %,
mm, and degrees, respectively.

Generator PSNRT  SSIMT  LPIPS|
Champ 29.13 0.972 0.019
Stable Animator 28.98 0.970 0.024
MimicMotion (Ours) 29.20 0.974 0.021

Table S4. Effect of different training video generators on the Neu-
Man test set.

Sapiens models PSNRT  SSIMT  LPIPS|
0.3B (Smallest one) 28.98 0.971 0.023
1B (Ours) 29.20 0.974 0.021

Table S5. Effect of different geometry estimators on the NeuMan

test set.
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(b) Avatars in the canonical space

(a) Input image (c) Output of LHM

Figure S9. Limitation of PERSONA. Due to texture inconsis-
tencies of generated frames, used to train our PERSONA, com-
plex patterns in invisible regions are challenging to render sharply.
Even very recent feed-forward method [2] fail to generate plausi-
ble textures.

etry and texture tracking and results in oversmoothed sur-
faces.

Blurry rendering for complex patterns in invisible re-
gions. Fig. SO illustrates that our pipeline struggles to
achieve sharp renderings in invisible regions when com-
plex patterns are present. While our method produces plau-
sible geometry and textures for these areas, as seen in
Fig. S5 and Fig. S6, intricate patterns remain difficult to ren-



der sharply due to inconsistencies in the generated frames
used to train PERSONA. We observe that even recent feed-
forward methods [2] fail to generate plausible textures. We
believe this limitation could be addressed by incorporating
more advanced image or video generative models.

Lack of relighting capability. Lastly, omitting RGB
offsets in pose-driven deformation modeling prevents our
method from handling relighting effects, such as natural
shadows and reflections in novel environments. Addressing
these challenges remains an avenue for future work.

Long pre-processing time. Generating training videos
with diffusion-based animators requires significant pre-
processing time due to their slow inference speed. It
takes approximately one hour to generate training videos,
whereas avatar training itself additionally takes 30 minutes.
Exploring strategies to optimize data generation for a more
efficient avatar creation pipeline presents an interesting di-
rection for future research.
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