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1. Ethics Statement
Advancements in localized image editing technology offer
substantial opportunities to enhance creative expression and
improve accessibility within digital media and virtual re-
ality environments. Nonetheless, these developments also
bring forth important ethical challenges, particularly con-
cerning the misuse of such technology to create misleading
content, such as deepfakes [12], and its potential effect on
employment in the image editing industry. Moreover, as
also highlighted by [10], it requires a thorough and careful
discussion about their ethical use to avoid possible misuse.
We believe that our method could help reduce some of the
biases present in previous datasets, though it will still be
affected by biases inherent in models such as CLIP. Eth-
ical frameworks should prioritize encouraging responsible
usage, developing clear guidelines to prevent misuse, and
promoting fairness and transparency, particularly in sensi-
tive contexts like journalism. Effectively addressing these
concerns is crucial to amplifying the positive benefits of the
technology while minimizing associated risks. In addition,

our user study follows strict anonymity rules to protect the
privacy of participants.

2. Runtime Analysis

Our method modifies the training objectives of IP2P by in-
corporating Edit Reversibility Constraint (ERC) and addi-
tional loss functions. However, these changes do not affect
the overall runtime. Inference time remains comparable to
the original IP2P framework, as we retain the same architec-
ture and model structure. Consequently, our approach intro-
duces no additional complexity or overhead in terms of pro-
cessing time or resource consumption. This gives UIP2P an
advantage over methods like MGIE [5] and SmartEdit [8],
which rely on large language models (LLMs) during infer-
ence in terms of runtime and resource consumption.

3. Elo Rating System

The Elo rating system is a widely used method for ranking
competitors in pairwise comparisons, originally designed
for chess and later adopted in various domains, including
generative model evaluation. It assigns each candidate a
score that dynamically updates based on comparative per-
formance. A higher Elo score indicates stronger perfor-
mance relative to other candidates.

3.1. Implementation Details

Our implementation follows the standard Elo rating mecha-
nism with the following key components:
• Initial Rating: Each model starts with a rating of 1500.
• K-Factor (K = 32): Governs the magnitude of rating

updates.
• Expected Score Calculation: The probability of a model

winning against another is computed as:

EA =
1

1 + 10(RB−RA)/400
(1)

where RA and RB are the Elo ratings of the two compet-
ing models.

• Score Update Rule: After each comparison, the winner’s
rating increases, and the loser’s rating decreases:

R′
A = RA +K(SA − EA) (2)

where SA = 1 for a win, 0 for a loss, and 0.5 for a draw.



3.2. Interpreting Elo Scores
Elo scores provide an intuitive understanding of model per-
formance:
• Higher Scores: Indicate models that consistently outper-

form others.
• Score Differences: A gap of 400 points implies the

higher-rated model is 10 times more likely to win.
• Stability of Rankings: As the number of votes increases,

the Elo system converges, producing a reliable perfor-
mance ranking.
By leveraging the Elo rating system, we ensure a ro-

bust, adaptive, and comparative evaluation framework for
image-editing models. This approach provides a dynamic
ranking that accounts for dataset variations and human an-
notation biases, aligning with best practices in benchmark-
ing generative models.

4. Additional Details on Ablation Studies

4.1. Loss Functions

Input Image Base Loss

Instruction: make her outfit black.

Figure 1. Visual effects of loss components. This figure demon-
strates how different loss components affect the final editing re-
sults. The comparison shows the impact of various loss terms on
edit quality and localization.

We focused our ablation studies on Lsim and Lattn be-
cause these losses are additional components beyond the
core LCLIP and Lrecon. The core losses are essential for
ensuring semantic alignment and reversibility in Edit Re-
versibility Constraint (ERC), forming the foundation of our
method. Without LCLIP and Lrecon, the model risks diverg-
ing, losing its ability to preserve both the input’s structure
and its semantic coherence during edits.

Adding Lsim enables the model to perform edits more
freely by encouraging alignment between image and tex-
tual embeddings, thereby expanding its capacity for com-
plex and diverse transformations. On the other hand, Lattn
refines the model’s ability to focus on relevant regions dur-
ing edits, improving localization and reducing unintended
changes in non-targeted areas.
LCLIP is applied between the input image and the edited

image to ensure semantic alignment with the edit instruc-
tion. The reconstructed image is already constrained by
Lrecon, which enforces structural and semantic consistency
with the input. Adding LCLIP to the reconstructed image
would be redundant and could interfere with the reversibil-

ity objective. Our design does not apply LCLIP to the re-
constructed image to preserve the focus on reversibility and
prevent conflicting optimization objectives.

4.2. Attention Across Noise Steps in Training
At training time, we sample two different noise steps for the
forward and backward processes, which are conditioned on
the input image and edit instruction. Attention consistency
is enforced between these different noise steps to ensure that
the model attends to the same regions during both forward
and reverse edits. This is supported by the observation that
cross-attention scores in instruction-based editing methods
tend to be more consistent across timesteps, as the edit in-
struction remains fixed and the model’s focus shifts only to
the regions being edited (see Fig. 2).

Figure 2. Attention maps for diffusion steps. Cross-attention
maps for forward (top) and reverse (middle) instructions across
early, middle, and later noise steps. The model enforces attention
consistency, focusing on relevant regions for both edits.

Recent works, such as those by Guo et al. [6] and Sim-
sar et al. [19], demonstrate that regularizing attention space
with a mask during inference enables localized edits in
IP2P. Our method builds on these ideas by incorporating
attention consistency into the training phase, making it pos-
sible to focus on relevant regions from the start and avoiding
the need for additional inference-time modifications.

5. Additional Qualitative Results
To further demonstrate the capabilities of our approach, we
present additional qualitative comparisons in Fig. 3. These
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Figure 3. Qualitative comparison of our method with baseline models for various editing instructions. From left to right: Input image,
edit instruction, and results from InstructPix2Pix, MagicBrush, HIVE, MGIE, SmartEdit, and our method. Our approach demonstrates
superior fidelity and alignment with the provided instructions across diverse tasks, such as expression changes, color adjustments, object
transformations, and creative edits. Red circles and arrows indicate drastic problems during the image editing.

results showcase the performance of our method against
several baseline models, including InstructPix2Pix, Mag-
icBrush, HIVE, MGIE, and SmartEdit, across a diverse
set of editing instructions. These tasks range from simple
edits, such as color adjustments and expression changes,
to more challenging transformations, including object re-
moval, style changes, and complex scene edits.

The comparison highlights that our method consistently
achieves higher fidelity and better alignment with the pro-
vided instructions. For instance, when instructed to mod-
ify facial expressions, such as “make the face happy,” our
method produces more natural and expressive results. Sim-
ilarly, for color adjustments, such as “make the color more
green,” our approach ensures vibrant and accurate edits that

surpass the performance of baseline models. In more chal-
lenging scenarios, like “turn the sunset into a firestorm,” our
method maintains the structural integrity of the original im-
age while executing the desired transformations. Further-
more, in creative edits, such as “remove the blinders from
the horse,” our model demonstrates exceptional precision
and attention to detail.

6. Additional Quantitative Results

6.1. Evaluation on PIE-Bench

We apply our method to the PIE benchmark [9] to evaluate
its performance on diverse editing tasks and compare it to
IP2P, a representative feed-forward instruction-based edit-



ing method and a supervised alternative to our approach.
Table 1 summarizes the results. The results show that our
method outperforms IP2P across most metrics, including
better preservation of structure (PSNR and SSIM), lower
perceptual differences (LPIPS), and reduced mean squared
error (MSE). These improvements demonstrate the scalabil-
ity and versatility of our approach on a broader benchmark.
This analysis is included in the revised manuscript to pro-
vide a comprehensive evaluation of our method.

Table 1. Performance comparison on the PIE benchmark.
Lower values for Distance, LPIPS, and MSE indicate better per-
formance, while higher values for PSNR, SSIM, Whole, and Edit
indicate improved quality and structural preservation.

Methods Distance ↓ PSNR ↑ LPIPS ↓ MSE ↓ SSIM ↑ Whole ↑ Edit ↑

InstructDiffusion 75.44 20.28 155.66 349.66 75.53 23.26 21.34
IP2P 57.91 20.82 158.63 227.78 76.26 23.61 21.64
Ours 27.05 26.85 60.57 40.07 83.69 24.78 21.89

6.2. Evaluation on Emu Edit
We apply our method to the Emu Edit benchmark [18] to
evaluate its performance on diverse editing tasks and com-
pare it to other baselines. Table 2 presents a quantitative
comparison across multiple metrics, assessing the quality of
the generated edits. Our approach achieves the best results
across most metrics, including higher CLIP scores, which
indicate better alignment with textual descriptions, and im-
proved perceptual quality as measured by DINO. Notably,
our method surpasses all baselines in CLIPdir and CLIPim,
demonstrating stronger instruction adherence and output re-
alism. The improvements in these objective measures fur-
ther support the effectiveness of our method in complex
editing tasks.

Table 2. Performance comparison on the Emu Edit bench-
mark.Comparison with image-editing baselines evaluated on Emu
Edit test set. For each method, we report CLIP, L1, and DINO met-
rics.

Method CLIPdir ↑ CLIPim ↑ CLIPout ↑ L1↓ DINO↑
InstructPix2Pix [2] 0.078 0.834 0.219 0.121 0.762
MagicBrush [21] 0.090 0.838 0.222 0.100 0.776
PnP [20] 0.028 0.521 0.089 0.304 0.153
Null-Text Inv. [15] 0.101 0.761 0.236 0.075 0.678
Emu Edit [18] 0.109 0.859 0.231 0.094 0.819
Ours 0.115 0.867 0.244 0.083 0.834

6.3. Evaluation on MagicBrush Test
In this section, we present the full quantitative analysis
on the MagicBrush test set, including results from both
global description-guided and instruction-guided models,
as shown in Tab. 3. While our method, UIP2P, is not
fine-tuned on human-annotated datasets like MagicBrush, it

still achieves highly competitive results compared to mod-
els specifically fine-tuned for the task. In particular, UIP2P
demonstrates either the best or second-best performance in
key metrics such as L1, L2, and CLIP-I, even outperform-
ing fine-tuned models in several cases. This highlights the
robustness and generalization capabilities of UIP2P, show-
ing that it can effectively handle complex edits without the
need for specialized training on real datasets. These re-
sults further validate that UIP2P delivers high-quality ed-
its in a variety of contexts, maintaining competitive per-
formance against fine-tuned models on the MagicBrush
dataset, which is human-annotated.

Table 3. Quantitative comparison on MagicBrush [21] test set.
In the multi-turn setting, target images are iteratively edited from
the initial source images. Best results are in bold.

Settings Methods L1↓ L2↓ CLIP-I↑ DINO↑ CLIP-T↑

Single-turn

Global Description-guided

Open-Edit [13] 0.1430 0.0431 0.8381 0.7632 0.2610
VQGAN-CLIP [4] 0.2200 0.0833 0.6751 0.4946 0.3879
SD-SDEdit [14] 0.1014 0.0278 0.8526 0.7726 0.2777
Text2LIVE [1] 0.0636 0.0169 0.9244 0.8807 0.2424
Null Text Inversion [15] 0.0749 0.0197 0.8827 0.8206 0.2737

Instruction-guided

HIVE [22] 0.1092 0.0341 0.8519 0.7500 0.2752
w/ MagicBrush [21] 0.0658 0.0224 0.9189 0.8655 0.2812

InstructPix2Pix [2] 0.1122 0.0371 0.8524 0.7428 0.2764
w/ MagicBrush [21] 0.0625 0.0203 0.9332 0.8987 0.2781

UIP2P w/ IP2P Dataset 0.0722 0.0193 0.9243 0.8876 0.2944
UIP2P w/ CC3M Dataset 0.0680 0.0183 0.9262 0.8924 0.2966
UIP2P w/ CC12M Dataset 0.0619 0.0174 0.9318 0.9039 0.2964

Multi-turn

Global Description-guided

Open-Edit [13] 0.1655 0.0550 0.8038 0.6835 0.2527
VQGAN-CLIP [4] 0.2471 0.1025 0.6606 0.4592 0.3845
SD-SDEdit [14] 0.1616 0.0602 0.7933 0.6212 0.2694
Text2LIVE [1] 0.0989 0.0284 0.8795 0.7926 0.2716
Null Text Inversion [15] 0.1057 0.0335 0.8468 0.7529 0.2710

Instruction-guided

HIVE [22] 0.1521 0.0557 0.8004 0.6463 0.2673
w/ MagicBrush [21] 0.0966 0.0365 0.8785 0.7891 0.2796

InstructPix2Pix [2] 0.1584 0.0598 0.7924 0.6177 0.2726
w/ MagicBrush [21] 0.0964 0.0353 0.8924 0.8273 0.2754

UIP2P w/ IP2P Dataset 0.1104 0.0358 0.8779 0.8041 0.2892
UIP2P w/ CC3M Dataset 0.1040 0.0337 0.8816 0.8130 0.2909
UIP2P w/ CC12M Dataset 0.0976 0.0323 0.8857 0.8235 0.2901

7. Edit Reversibility Constraint Example
We demonstrate ERC with a visual example during infer-
ence. In the forward pass, the model transforms the input
image based on the instruction (e.g., “turn the forest path
into a beach”). In the reverse pass, the corresponding re-
verse instruction (e.g., “turn the beach back into a forest”) is
applied, reconstructing the original image. This showcases
the model’s ability to maintain consistency and accuracy
across complex edits, ensuring that both the forward and
reverse transformations align coherently. Additional exam-
ples, such as adding and removing objects, further empha-
size UIP2P’s adaptability in diverse editing tasks. Figure 4
illustrates how our method ensures precise, reversible edits
while maintaining the integrity of the original content.



Table 4. Examples of Four Possible Edits for Two Different Input Captions. Our dataset generation process showcases the flexibility
of the reverse instruction dataset by demonstrating multiple transformations for the same caption.

Input Caption Edit Instruction Edited Caption Reverse Instruction

A dog sitting on a couch

change the dog’s color
to brown

A brown dog sitting on a
couch

change the dog’s color
back to white

add a ball next to the
dog

A dog sitting on a couch with
a ball

remove the ball

remove the dog An empty couch add the dog back
move the dog to the
floor

A dog sitting on the floor move the dog back to
the couch

A car parked on the street

change the car color to
red

A red car parked on the street change the car color
back to black

add a bicycle next to the
car

A car parked on the street with
a bicycle

remove the bicycle

remove the car An empty street add the car back
move the car to the
garage

A car parked in the garage move the car back to the
street

make the forest 

path into a beach

Input Image Forward Instr. Reverse Instr.

make the beach 

path into a forest

remove hot 

air balloons

add hot 

air balloons

Figure 4. Forward and reverse edits are applied sequentially.

8. Dataset Details

8.1. LLM Prompts for Data Generation

To ensure reproducibility, we provide the exact prompts
used with LLMs for generating reverse instructions and ex-
panding datasets. These prompts were crucial for creating
the training data without requiring ground-truth edited im-
ages.

8.1.1. LLM Prompt for Reverse Instruction Generation
(IP2P Dataset)

Below is an instruction that describes a
task, paired with an input that provides
further context. Write a response that
appropriately completes the request.

### Instruction:
You are an expert in image editing
instructions. Given an input caption, an
edit instruction, and the resulting edited
caption, generate a reverse instruction
that would undo the edit and return to
the original state.

### Input:
Input Caption: "{input_caption}"
Edit Instruction: "{edit_instruction}"
Edited Caption: "{edited_caption}"

Examples:
- Input: "A man wearing a denim jacket"

-> "make the jacket a rain coat"
-> "A man wearing a rain coat"
Reverse: "make the coat a denim jacket"

- Input: "A sofa in the living room"
-> "add pillows" -> "A sofa in the
living room with pillows"
Reverse: "remove the pillows"

### Response:
{reverse_instruction}



8.1.2. LLM Prompt for Multi-Edit Generation
(CC3M/CC12M)

Below is an instruction that describes
a task, paired with an input that
provides further context. Write a
response that appropriately completes
the request.

### Instruction:
Given an input caption, generate 4
different edit instructions along with
their corresponding edited captions and
reverse instructions. Focus on diverse
edit types: color changes, object
addition/removal, and positional
changes. Ensure edits are realistic
and reversible.

### Input:
Input Caption: "{input_caption}"

### Response:
1. Edit Instruction: [instruction]

Edited Caption: [result]
Reverse Instruction: [undo instruction]

2. Edit Instruction: [instruction]
Edited Caption: [result]
Reverse Instruction: [undo instruction]

3. Edit Instruction: [instruction]
Edited Caption: [result]
Reverse Instruction: [undo instruction]

4. Edit Instruction: [instruction]
Edited Caption: [result]
Reverse Instruction: [undo instruction]

8.2. Dataset Filtering
We apply CLIP [16] to both the CC3M [17] and CC12M [3]
datasets to calculate the similarity between captions and im-
ages, ensuring that the text descriptions accurately reflect
the content of the corresponding images. Following the
methodology used in InstructPix2Pix (IP2P) [2], we adopt
a CLIP-based filtering strategy with a similarity threshold
set at 0.2. This threshold filters out image-caption pairs that
do not have sufficient semantic alignment, allowing us to
curate a dataset with higher-quality text-image pairs. For
the filtering process, we utilize the CLIP ViT-L/14 model,
which provides a robust and well-established framework for
capturing semantic similarity across text and images.

By applying this filtering process, we ensure that only
relevant and coherent pairs remain in the dataset, improv-
ing the quality of training data and helping the model bet-
ter generalize to real-world editing tasks. As a result, the
filtered CC3M dataset contains 2.5 million image-caption

pairs, while the filtered CC12M dataset contains 8.5 mil-
lion pairs. This careful curation of the dataset enhances
the reliability of the training process without relying on
human annotations, making it scalable for broader real-
image datasets without the cost and limitations of human-
annotated ground-truth datasets [2, 21].

8.3. More Examples from Reverse Instructions
Dataset

To demonstrate the versatility of our reverse instruction
dataset, we provide examples with multiple variations of ed-
its for two different input captions. Each caption has four
distinct edits, such as color changes, object additions, object
removals, and positional adjustments. This variety helps the
model generalize across a wide range of tasks and scenar-
ios, as discussed in Sec. 4.2, main paper. The use of large
language models (LLMs) to generate reverse instructions
further enhances the flexibility of our dataset.

These examples, along with others in Tab. 1, illustrate
the diversity of edit types our model learns, enabling it to
perform a wide range of tasks across different real-image
datasets. The reverse instruction mechanism ensures that
the edits are reversible, maintaining consistency and coher-
ence in both the forward and reverse transformations.

9. Additional Implementation Details
9.1. Details of Competitor Methods
Our method offers significant advantages over competitors
in both training and inference. Unlike supervised meth-
ods that rely on paired triplets of input images, edited im-
ages, and instructions, our approach eliminates the need
for such datasets, reducing biases and improving scalabil-
ity. For example, MagicBrush is fine-tuned on a human-
annotated dataset, while HIVE leverages Prompt-to-Prompt
editing with human annotators, introducing dependency on
labor-intensive processes. Furthermore, MGIE and SmartE-
dit rely on LLMs during inference, which significantly in-
creases computational overhead. These distinctions high-
light the efficiency and practicality of our approach, as it
avoids the need for expensive human annotations and addi-
tional inference-time complexities. Like other editing meth-
ods, our approach can produce small variations for differ-
ent random seeds but consistently applies the specified edit,
eliminating the need for manual selection. To the best of
our knowledge, the compared methods, e.g., MagicBrush,
InstructPix2Pix or other methods, also do not involve man-
ual selection.
InstructPix2Pix [2] is a diffusion-based model that per-
forms instruction-based image editing by training on triplets
of input image, instruction, and edited image1. The model is

1https : / / github . com / timothybrooks / instruct -
pix2pix

https://github.com/timothybrooks/instruct-pix2pix
https://github.com/timothybrooks/instruct-pix2pix


fine-tuned on a synthetic dataset of edited images generated
by combining large language models (LLMs) and Prompt-
to-Prompt [7]. This approach relies on paired datasets,
which can introduce biases and limit generalization. In-
structPix2Pix serves as one of the key baselines for our
comparison, given its supervised training methodology.
HIVE [22] is an instruction-based editing model that fine-
tunes InstructPix2Pix based on human feedback2. Specif-
ically, HIVE learns from user preferences about which
edited images are preferred, incorporating this feedback
into the model training. While this approach allows HIVE
to better align with human expectations, it still builds on top
of InstructPix2Pix and does not start training from scratch.
This limits its flexibility compared to methods like UIP2P,
which are trained from the ground up.
MagicBrush [21] fine-tunes the pre-trained weights of In-
structPix2Pix on a human-annotated dataset to improve
real-image editing performance3. While this fine-tuning
approach makes MagicBrush highly effective for specific
tasks with ground-truth labels, it limits its generalizabil-
ity compared to methods like UIP2P, which are trained
from scratch. Moreover, MagicBrush’s reliance on human-
annotated data introduces significant scalability challenges,
as obtaining such annotations is both costly and labor-
intensive. This dependency makes it less suited for broader
datasets where large-scale annotations may not be feasible.
MGIE [5] introduces a large multimodal language model to
generate more precise instructions for image editing4. Like
InstructPix2Pix, MGIE requires a paired dataset for train-
ing but uses the language model to improve the quality of
the instructions during inference. However, this reliance on
LLMs during inference adds computational overhead. In
contrast, UIP2P operates without LLMs at inference time,
reducing overhead while maintaining flexibility.
SmartEdit [8] is based on InstructDiffusion, a model al-
ready trained for instruction-based image editing tasks5. It
introduces a bidirectional interaction module to improve
text-image alignment, but its reliance on the pre-trained In-
structDiffusion limits flexibility, as SmartEdit does not start
training from scratch. Additionally, SmartEdit depends on
large language models (LLMs) during inference, increasing
computational overhead. This makes SmartEdit less effi-
cient than UIP2P in scenarios where real-time or large-scale
processing is required.
DiffusionCLIP [11] leverages pre-trained diffusion mod-
els for text-driven image manipulation by fine-tuning the
reverse diffusion process with a CLIP-based loss6. Unlike
UIP2P, which enforces edit reversibility constraints for un-

2https://github.com/salesforce/HIVE
3https://github.com/OSU-NLP-Group/MagicBrush
4https://ml-mgie.com/playground.html
5https://github.com/TencentARC/SmartEdit
6https://github.com/gwang-kim/DiffusionCLIP.git

supervised training, DiffusionCLIP relies on fine-tuning for
each new target attribute, making it less scalable for large-
scale instruction-based editing. Additionally, its approach
requires per-attribute model tuning and inversion of the in-
put image before the editing process, leading to increased
training and inference overhead compared to UIP2P, which
generalizes across a diverse set of edits without explicit su-
pervision and additional inversion process.

During evaluation, we use the publicly available imple-
mentations and demo pages of the baseline methods. Each
baseline provides a different approach to instruction-based
image editing, and together they offer a comprehensive set
of methods for comparing the performance, flexibility, and
efficiency of the proposed method, UIP2P.

9.2. Code Implementation Overview
Our UIP2P implementation with ERC builds on existing
frameworks for reproducibility:
• Base Framework: The code is based on Instruct-

Pix2Pix7, which provides the foundation for instruction-
based image editing.

• Adopted CLIP Losses: We adopted and modified CLIP-
based loss functions from StyleGAN-NADA8 to fit ERC,
improving image-text alignment for our specific tasks.

9.3. Algorithm Overview
In this section, we explain the proposed method, UIP2P,
which introduces unsupervised learning for instruction-
based image editing. The core of our approach is the Edit
Reversibility Constraint (ERC), which ensures that edits are
coherent and reversible when applied sequentially in both
forward and reverse instructions.

The algorithm consists of two key processes:
• Forward Process: Starting with an input image and a

forward edit instruction, noise is first added to the image.
The model then predicts the noise, which is applied to
reverse the noise process and recover the edited image
(see Algorithm 1, lines 2-4).

• Reverse Process: Given the forward-edited image and a
reverse edit instruction, noise is applied again. The model
predicts the reverse noise, which is used to undo the edits
and reconstruct the original image. This ensures that the
reverse edits are consistent with the original input image
(see Algorithm 1, lines 6-8).
ERC is applied between the original input image, the

forward-edited image, and the reconstructed image, along
with their respective attention maps and captions (see Algo-
rithm 1, line 10). The LERC function guides the model’s
learning through backpropagation (see Algorithm 1, lines
12-13).

7https : / / github . com / timothybrooks / instruct -
pix2pix

8https://github.com/rinongal/StyleGAN-nada

https://github.com/salesforce/HIVE
https://github.com/OSU-NLP-Group/MagicBrush
https://ml-mgie.com/playground.html
https://github.com/TencentARC/SmartEdit
https://github.com/gwang-kim/DiffusionCLIP.git
https://github.com/timothybrooks/instruct-pix2pix
https://github.com/timothybrooks/instruct-pix2pix
https://github.com/rinongal/StyleGAN-nada


Algorithm 1 Unsupervised Instruction-Based Image Edit-
ing (UIP2P) with ERC

Require: Image Ii (input image), Forward edit instruction
F , Reverse edit instruction R, Noise levels t (forward),
t̂ (reverse), Model M , Loss function LERC , Noise
function N , Input caption Ti, Edited caption Te

Ensure: Edited image Ie, Reconstructed image Ir

1: Forward Process:
2: zt ← N(Ii, t) ▷ Add noise t to the input image Ii
3: ϵ̂F , Af ←M(zt|Ii, F ) ▷ Model M predicts forward

noise ϵ̂F and extracts attention map Af

4: Ie ← Apply(ϵ̂F , zt, t) ▷ Apply predicted noise ϵ̂F to
reverse the process of obtaining zt and recover Ie

5: Reverse Process:
6: zt̂ ← N(Ie, t̂) ▷ Add noise t̂ to the forward-edited

image Ie
7: ϵ̂R, Ar ←M(zt̂|Ie, R) ▷ Model M predicts reverse

noise ϵ̂R and extracts attention map Ar

8: Ir ← Apply(ϵ̂R, zt̂, t̂) ▷ Apply predicted noise ϵ̂R to
reverse the process of obtaining zt̂ and recover Ir

9: Edit Reversibility Constraint Loss:
10: LERC ← L(Ii, Ie, Ir, Af , Ar, Ti, Te) ▷ Compute

ERC loss using Ii, Ie, Ir, attention maps Af , Ar, input
text Ti, and edited text Te

11: Update Model:
12: Backpropagate the loss LERC and update the model M
13: Repeat until convergence

10. Limitations and Failure Cases

While our method demonstrates strong performance across
various editing tasks, we acknowledge several limita-
tions. Our reliance on CLIP for semantic alignment in-
troduces challenges in fine-grained spatial reasoning, ob-
ject counting, and complex compositional understanding.
The method may struggle with instructions requiring pre-
cise spatial relationships (e.g., “add three apples to the left
of the table”) or complex multi-object scenarios with occlu-
sions. Additionally, like many diffusion-based methods, our
approach has difficulties with text rendering, extreme light-
ing changes, and cases requiring simultaneous style transfer
with significant structural modifications.

Our method’s performance is also constrained by train-
ing data quality and the reverse instruction generation pro-
cess using LLMs. While more efficient than LLM-based ap-
proaches during inference, the training process requires ad-
ditional computational overhead for generating reverse in-

structions and computing attention consistency losses. Fu-
ture work could address these limitations by integrating
stronger multimodal models for better spatial understand-
ing, incorporating perceptual losses for improved photore-
alism, and developing more sophisticated evaluation frame-
works beyond CLIP-based metrics.



References
[1] Omer Bar-Tal, Dolev Ofri-Amar, Rafail Fridman, Yoni Kas-

ten, and Tali Dekel. Text2live: Text-driven layered image
and video editing. In Computer Vision - ECCV 2022 - 17th
European Conference, Tel Aviv, Israel, October 23-27, 2022,
Proceedings, Part XV, pages 707–723. Springer, 2022. 4

[2] Tim Brooks, Aleksander Holynski, and Alexei A. Efros. In-
structpix2pix: Learning to follow image editing instructions.
In CVPR, 2023. 4, 6

[3] Soravit Changpinyo, Piyush Sharma, Nan Ding, and Radu
Soricut. Conceptual 12m: Pushing web-scale image-text pre-
training to recognize long-tail visual concepts. In Proceed-
ings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 3558–3568, 2021. 6

[4] Katherine Crowson, Stella Biderman, Daniel Kornis,
Dashiell Stander, Eric Hallahan, Louis Castricato, and Ed-
ward Raff. VQGAN-CLIP: open domain image generation
and editing with natural language guidance. In Computer Vi-
sion - ECCV 2022 - 17th European Conference, Tel Aviv, Is-
rael, October 23-27, 2022, Proceedings, Part XXXVII, pages
88–105. Springer, 2022. 4

[5] Tsu-Jui Fu, Wenze Hu, Xianzhi Du, William Yang Wang,
Yinfei Yang, and Zhe Gan. Guiding instruction-based im-
age editing via multimodal large language models. arXiv
preprint arXiv:2309.17102, 2023. 1, 7

[6] Qin Guo and Tianwei Lin. Focus on your instruction:
Fine-grained and multi-instruction image editing by atten-
tion modulation. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages
6986–6996, 2024. 2

[7] Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman,
Yael Pritch, and Daniel Cohen-Or. Prompt-to-prompt image
editing with cross attention control. CoRR, abs/2208.01626,
2022. 7

[8] Yuzhou Huang, Liangbin Xie, Xintao Wang, Ziyang Yuan,
Xiaodong Cun, Yixiao Ge, Jiantao Zhou, Chao Dong, Rui
Huang, Ruimao Zhang, et al. Smartedit: Exploring complex
instruction-based image editing with multimodal large lan-
guage models. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 8362–
8371, 2024. 1, 7

[9] Xuan Ju, Ailing Zeng, Yuxuan Bian, Shaoteng Liu, and
Qiang Xu. Direct inversion: Boosting diffusion-based edit-
ing with 3 lines of code. arXiv preprint arXiv:2310.01506,
2023. 3

[10] Krishnaram Kenthapadi, Himabindu Lakkaraju, and
Nazneen Rajani. Generative ai meets responsible ai: Practi-
cal challenges and opportunities. In Proceedings of the 29th
ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, pages 5805–5806, 2023. 1

[11] Gwanghyun Kim, Taesung Kwon, and Jong Chul Ye. Diffu-
sionclip: Text-guided diffusion models for robust image ma-
nipulation. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 2426–2435,
2022. 7
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