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The supplementary material is organized as follows: in
Sec. A we lay down additional implementation details of
our proposed FedMVP. In Sec. B we provide a detailed
breakdown of the experimental results that have been re-
ported in the main paper.

A. Additional implementation details

A.1. Attribute generation and usage

Attribute generation. As discussed in Sec. 3.3.1 of the
main paper, one of the core proposals in our proposed Fed-
MVP is to integrate the class attribute information into the
multimodal prompt generation process orchestrated by the
PromptFormer network.

The attributes for a given class are generated using a
large language model (LLM), such as GPT-4o [2] in our
case. For the kth class name in the ith client ci,k, we query
GPT-4o using a structured instructional prompt, follow-
ing [24] as:

LLM Prompt

“What are the most useful detailed generic visual
features for distinguishing a [class name] in an im-
age? Please act as an expert with comprehensive
knowledge of all aspects of generic objects.”

where the “class name” is replaced with the value of ci,k.
For instance, when we prompt GPT-4o with the class name
“giraffe” we get a comma separated list of attributes:

Attributes generated by LLM

“Distinctive coat pattern with large, irregular brown
patches”, “unique coat pattern with large, irregu-
lar brown patches”, “exceptionally long neck, a pri-
mary distinguishing feature”, “small, rounded os-
sicones or horns on the head”, “slender, elongated
legs, emphasizing their height”, “tall, narrow body
frame with prominent shoulders.”

Composing text prompts. In addition to the attributes,
we utilize generic hand-crafted prefixes (e.g. “a photo of
a [class name]”), as used in [29], or domain-specific pre-
fixes (e.g. “a sketch of a [class name]”) tailored to each
dataset. Details of the prefix templates for each bench-
mark are reported in Table A2. We then combine these
prefixes with GPT-4o generated attributes using connector
phrases “which is a/an” or “which has”, to form composite
text prompts for the CLIP text-encoder feature extractor. A
complete example of text prompt for the class “giraffe” that
is used for CLIP text feature attribute extraction is given as
follows:

Composite prompt for CLIP text encoder

“A photo of a giraffe, which has a distinctive coat
pattern with large, irregular brown patches.”

We provide more examples of the LLM-generated at-
tributes and the complete text prompts in Fig. 1.

Using attributes during training. Note from Fig. 2 of
the main paper that there is a distinction between how at-
tributes are used by the PromptFormer network and for
training the FedMVP. To recap, the PromptFormer net-
work takes as input only the LLM-generated attributes for
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"A photo of a Siberian husky, which has broad 
head with almond-shaped eyes."
"A photo of a Siberian husky, which has high-set, 
erect ears with pointed tips."
"A photo of a Siberian husky, which has medium-length, 
dense double coat in various colors."
"A photo of a Siberian husky, which has weather-resistant 
coat for cold climates."
"A photo of a Siberian husky, which has athletic, 
agile build with deep chest."

"A photo of a flamingo, which has long, slender legs  and 
neck with graceful curve."
"A photo of a flamingo, which has pink or red plumage 
with smooth texture."
"A photo of a flamingo, which has broad, slightly 
rounded wings."
"A photo of a flamingo, which has distinctive, down-curved 
beak for filtering."
"A photo of a flamingo, which has upright  posture 
in shallow water."

"A photo of a bookstore, which has bookshelves."
"A photo of a bookstore, which has book merchandise."
"A photo of a bookstore, which has display tables."
"A photo of a bookstore, which has reading area."
"A photo of a bookstore, which has book stacks."
"A photo of a bookstore, which has store signage."
"A photo of a bookstore, which has customer browsing."
"A photo of a bookstore, which has store layout."
"A photo of a bookstore, which has book covers."

"A photo of a baseball stadium, which has baseball diamond."
"A photo of a baseball stadium, which has seating areas."
"A photo of a baseball stadium, which has scoreboard."
"A photo of a baseball stadium, which has field layouts."
"A photo of a baseball stadium, which has dugouts."
"A photo of a baseball stadium, which has foul poles."
"A photo of a baseball stadium, which has lighting."
"A photo of a baseball stadium, which has stadium design."
"A photo of a baseball stadium, which has stadium signage."

"A real image of a snowman, which has shading 
for snow's smooth texture."
"A real image of a snowman, which has carrot nose 
and button eyes."
"A real image of a snowman, which has visible 
stick arms on sides."
"A real image of a snowman, which has simple hat 
and scarf for decoration."
"A real image of a snowman, which has occasional 
coal buttons on body."

"A painting of the Eiffel Tower, which has tall, triangular iron 
lattice structure."
"A painting of the Eiffel Tower, which has four supporting legs 
that taper upward."
"A painting of the Eiffel Tower, which has thin spire at the 
top center."
"A painting of the Eiffel Tower, which has crisscross pattern 
in ironwork."
"A painting of the Eiffel Tower, which has base often shown 
with surrounding gardens."
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Figure 1. Examples of LLM-generated attributes and complete text prompts. We report some example text prompts used in FedMVP
for the datasets ImageNet, DomainNet and SUN397.

constructing the multimodal visual prompts. Whereas, for
training the FedMVP we use the composite text prompts,
which has just been described above. Given a class name
ck

1 we obtain the text feature tk (used in Eq. 5 of the main
paper) from the CLIP text encoder Et by using a composite
text prompt. Then we repeat this step for all the attributes
generated by the LLM for a given class k, which gives us a
matrix of CLIP text embeddings Tk, where the entry Tk,j is
the text embedding corresponding the jth attribute for class
k. Given all the text embeddings for a class, we are now
ready to compute the CLIP similarity in Eq. 5 of the main
paper.

We follow the scoring proposed in DESC [24], where for
a given image, belonging to class label y and class name ck,
the final prediction probability p(y = k | I) are calculated
by averaging the score for each attribute j as p(y = k|I) =:

1

dim2(Tk,J)

∑
j∈J

exp(cos(v,Tk,j))/τ)∑K
k′=1 exp(cos(v,Tk′,j))/τ)

, (1)

where dim2(·) denotes the dimension or total number of at-
tributes J for a given class k.

Using attributes during inference. For inference, we
follow the same scoring as per Eq. 1. The predicted class
is given by taking an argmax of the probability distribution
over all the classes. Since we utilize the scoring method of

1Omitting client index i for brevity.

Table A1. Comparison of our FedMVP with zero-shot CLIP
and DESC. Average harmonic mean is reported for Base-to-New
generalization and average accuracy of DomainBed benchmarks
of multi-source single-target generalization.

Methods Prompts Base-to-New MSST

ZS-CLIP [29] hand-crafted 74.24 70.41
DESC [24] 75.18 69.89

FedMVP (Ours) textual+visual 77.52 72.24

DESC in our method, we also compare the performance of
DESC with FedMVP on two generalization settings – base-
to-new generalization and multi-source single-target gener-
alization – in Tab. A1. From DESC numbers we can observe
that using LLM-generated attributes alone is not sufficient
to improve much over the ZS-CLIP baseline. Interestingly,
DESC leads to a drop in performance over the ZS-CLIP
baseline that does not use any attributes on the DomainBed
benchmark. Contrarily, our FedMVP can better utilize the
LLM attributes through the cross-attention mechanism of
the proposed PromptFormer network, as described in Sec.
3.3.1 of the main paper.

Since all the evaluations are done on the server, except
for local accuracy, as described in Sec. 4.1 of the main pa-
per, each client sends the LLM-generated attributes to the
server, which constitutes a relatively tiny communication
overhead. Alternatively, the server can also generate the
attributes for all the classes, since the clients will have no
knowledge about the disjoint classes in other clients.
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Algorithm 1 Federated Multimodal Visual Prompt Tuning (FedMVP) algorithm

1: procedure SERVER EXECUTION
2: ρ0 = {Θ0} ▷ Initialize ρ0 parameters of PromptFormer module
3: for r← 0 to R do ▷ For total communication rounds R
4: Choose a random subset of remote clients as Sr

5: for i ∈ Sr in parallel do ▷ For a client i, belongs to Sr

6: Send the current global model ρr to client i
7: Receive locally updated ρr+1

i from Client Training
8: end for
9: Aggregate the updated model parameters, ρr+1 = 1

|Sr|
∑

i∈Sr
ρr+1
i

10: end for
11: Get the final model parameter ρR = {ΘR, θR}
12: end procedure
13: procedure CLIENT TRAINING
14: Generate the attributes of set of classes, Ci = {ci,k}Ki

k=1, by a LLM ▷ Ki is the total number of classes of i
15: Extract the attribute embeddings, Ai = {Et(LLM(Ci))}
16: for l← 0 to L do ▷ For local epochs L
17: if loss >threshold then
18: Generate the visual prompts P using eq. 2 and eq. 3 ▷ Follow eq. 2 and eq. 3 from the main paper
19: Concatenate the [CLS] token, the patch embeddings, and the visual prompts, as I = [z;E;P]
20: Extract the visual features from Ev
21: else
22: Start LoRA fine-tuning of the PromptFormer module
23: end if
24: Estimate the prediction scores using Eq. 1
25: Calculate and update the losses using eq. 4 to eq. 7 ▷ Follow eq. 4 to eq. 7 from the main paper
26: Update the parameters ρr to ρr+1

i locally using eq. 8 on (x, y) ∼ Di ▷ Follow eq. 8 from the main paper
27: end for
28: end procedure

A.2. Pseudo-code of FedMVP
In Algorithm 1 we provide a pseudo-code of the full Fed-
MVP algorithm. We split the algorithm into two parts: one
for server execution and another for client training.

A.3. Architecture details of FedMVP
The only trainable parameters of FedMVP are composed of
PromptFormer network parameters. Below we describe ad-
ditional architecture details of each trainable network. Note
that we do not tune the vision and text encoder backbones of
CLIP, and hence refer the reader to the original paper [29]
for the architecture details of CLIP.

PromptFormer. The PromptFormer network fΘ consists
of two multi-head cross-attention (MHCA) modules, two
feed-forward networks (FFN), a projection layer Tproj and a
learnable query prompt Q. Each MHCA module consists
of a 4-head cross-attention mechanism, followed by Layer-
Norm. Each FFN comprises of a two-layer bottleneck struc-
ture (Linear-GeLU-Linear). Tproj performs a linear transfor-
mation to convert the textual feature space of dimension 512

into the patch embedding space with a dimension of 768. Q
is comprised of prompt length 4, initialized with a Gaussian
distribution of σ = 0.02.

B. Additional experimental results
B.1. Dataset details.
In Tabs. A2(a) and (b) we provide detailed information of
all the datasets used in the experiments of the main paper
and the associated statistics, such as the number of classes,
number of samples, and the prefix templates. In detail, the
Tab. A2(a) includes the datasets used in the experiments
corresponding to Tab. 2 of the main paper. The Tab. A2(a)
includes the datasets used in Tabs. 1, 2, and 4 of the main
paper. We refer the reader to the corresponding papers that
have proposed the original datasets for further details and
example images.

B.2. Experimental setup
Metrics. We assess the performance of all methods us-
ing classification accuracy. In the base-to-novel general-
ization setting, we additionally report the harmonic mean
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Table A2. Dataset Details

(a) Domain Generation dataset statistical details on class, training and test splits, prefix template.

Dataset Domain Classes Train Test Prefix template

PACS [19]

Art Painting

7

1,024 614 An art painting of a [CLASS]
Cartoon 1,171 704 A cartoon of a [CLASS]
Photo 835 502 A photo of a [CLASS]
Sketch 1,964 1,179 A sketch of a [CLASS]

OfficeHome [33]

Art

65

1,214 728 An art of a [CLASS]
Clipart 2,191 1,298 A clipart of a [CLASS]
Product 2,226 1,324 A product image of a [CLASS]

RealWorld 2,180 1,304 A realworld image of a [CLASS]

VLCS [8]

CALTECH

5

891 424 A high quality photo of a [CLASS], as a standalone object
LABELME 1,672 797 A realworld photo of the [CLASS]

PASCAL-VOC 2,127 1,013 A realworld photo of a [CLASS]
SUN 2,067 985 A photo of a [CLASS], in diverse scenic environments

Terra Incognita [3]

Location-38

10

4,883 2,930 A photo of a [CLASS]
Location-43 2,009 1,207 A photo of a [CLASS]
Location-46 3,061 1,836 A photo of a [CLASS]

Location-100 2,439 1,466 A photo of a [CLASS]

DomainNet [27]

Clipart

345

24,417 14,647 A clipart of a [CLASS]
Infograph 26,609 15,948 An infograph of a [CLASS]
Painting 37,873 22,744 A painting of a [CLASS]

Quickdraw 86,250 51,750 A quickdraw image of a [CLASS]
Real 87,663 52,604 A real image of a [CLASS]

Sketch 35,195 21,109 A sketch of a [CLASS]

(b) Dataset statistical details on class, training and test splits, prefix template.

Dataset Classes Train Test Prefix template

Caltech101 [9] 101 4,128 2,465 A photo of a [CLASS]
Flowers102 [25] 102 4,093 2,463 A photo of a [CLASS], a type of flower
FGVCAircraft [23] 100 3,334 3,333 A photo of a [CLASS], a type of aircraft
UCF101 [32] 101 7,639 3,783 A photo of a person doing [CLASS]
OxfordPets [26] 37 2,944 3,369 A photo of a [CLASS], a type of pet
Food101 [5] 101 50,500 30,300 A photo of a [CLASS], a type of food
DTD [6] 47 2,820 1,692 A photo of a [CLASS], a type of texture
StanfordCars [18] 196 6,509 8,041 A photo of a [CLASS]
SUN397 [35] 397 15,880 19,850 A photo of a [CLASS]
EuroSAT [12] 10 13500 8,100 A centered satellite photo of [CLASS]

ImageNet [7] 1000 1.28M 50,000 A photo of a [CLASS]
ImageNetV2 [30] 1000 N/A 10,000 A photo of a [CLASS]
ImageNet-Sketch [34] 1000 N/A 50,889 A photo of a [CLASS]
ImageNet-A [14] 200 N/A 7500 A photo of a [CLASS]
ImageNet-R [13] 200 N/A 30,000 A photo of a [CLASS]

(HM) of the accuracies on base and new classes. All the
performances are reported on the test split of each dataset,
unless stated otherwise.

Base-to-New Generalization. In this setup (which corre-
sponds to Sec. 4.1 of the main paper), we keep the participa-
tion of clients to 100% and the number of classes per client,
K = 20, similar to [28] that produces 30 remote clients
over 9 datasets. We set the batch size to 128, the training
sample per class to 8, and the number of communication
rounds to 200.

Domain Generalization. For both the Multi-source
Single-target (MSST) and Single-source Multi-target
(SSMT) domain generalization settings (corresponding to
Sec. 4.2 of the main paper) on DomainBed benchmark, we
keep the participation of clients to 100%, shots to 8 and

batch size to 128. However, we set the number of classes
per client, K = 2, and global communication round to 20
for PACS, VLCS, and Terra Incognita datasets. In contrast,
for OfficeHome and DomainNet datasets, we fix the number
of classes per client, K = 20, and global communication
rounds to 100.

For the DG setting on ImageNet benchmark, we follow
the setup of [28], keeping participation of clients to 10%,
shots to 8, and number of classes per client, K = 5, for
ImageNet training. In this case, we fix the batch size to 128
and the number of communication rounds to 200.

Cross-Dataset Generalization. Similar to [28], we keep
the participation of clients to 10%, shots to 8, and the num-
ber of classes per client, K = 5 for ImageNet training, and
perform the evaluation on 10 datasets. The batch size and
number of communication rounds are fixed to 128 and 200,

4



Dining Room
Restaurant

Dining Car

Food Court

Restaurant Patio

Restaurant

FedTPG FedMVP (Ours) FedMVP (Ours)FedTPG
Mountain Mountain

Hill Mountain Snowy

Mountain

Cultivated Field

FedTPG FedTPGFedMVP (Ours) FedMVP (Ours)

Wild Field
Cultivated Field

Wheat Field

Hayfield

Corn Field

Apartment Building

Mansion

Skyscaper

Restaurant
Dining Room

Dining Car

Restaurant Patio

Food Court

Mountain Snowy Hill
Cliff Cliff

Tree Farm Sky

Cultivated Field

Wheat Field

Wild Field

Hayfield

Mountain

Office Building

Plaza

Apartment Building

Building Facade

Street

Alley

Office Building Office Building

Figure 2. Qualitative comparison of top-5 predictions on SUN397 dataset in Base-to-New Generalization setting. The correct predictions
(and annotations) are highlighted with green and the incorrect predictions are highlighted with red.
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B.3. Detailed Results

Qualitative results. In Figs. 2 and 3 we randomly pick
few test samples and visualize the top-5 prediction prob-
abilities of our FedMVP and compare it with that of
FedTPG [28].

In Fig. 2 we report the top-5 predictions of our FedMVP
and FedTPG for a few samples corresponding to the base-
to-new generalization generalization setting. On the top-left
example, we notice that FedTPG confuses a “Restaurant”
with a “Dining room”, two classes that share a lot of vi-
sual similarities, whereas our FedMVP correctly classifies
it as the “Restaurant”. This behaviour can be attributed to
the usage of attributes of our method that imparts a more
fine-grained knowledge into the visual prompts. Interest-
ingly, for the example of “Mountain” on top-right, while
both the methods can predict the correct class, we see that
for our FedMVP, the second most confident class is “Moun-
tain Snowy”, which is more accurate for the given example.
This can be attributed due to the use of attributes during
visual prompt tuning, as a LLM would generate “snow on
mountains” as a characteristic attribute of a mountain. Thus,
given enough training samples of mountains with snow, the
model will even start recognizing snowy mountains, which
is not the case for FedTPG, where the second most confident
prediction is “Hill” – a more generic form of a mountainous
landscape.

In Fig. 3 bottom-left example of the class “Kettle”, both
FedTPG and FedMVP predicts the correct class. However,
the top-5 classes predicted by FedTPG include completely
unrelated classes such as “Helmet”, “Alarm Clock” and
“Desk Lamp”. Whereas, in our FedMVP we notice classes
semantically similar to the class “Kettle” such as “Bottle”,
“Mug” and “Bucket”. This indicates that the presence of the
attributes helps the model to generalize across clients or do-
mains unseen during training, and make more reasonable
predictions, as long as objects share similar visual parts.
However, in the bottom right example of Fig. 3 we observe
that both the models get the prediction incorrect, but it is a
more reasonable mistake as a “File Cabinet” shares a lot of
visual similarity with the class “Shelf” which is the ground
truth annotation.

This underscores the importance of incorporating at-
tributes during the visual prompt tuning step, enhancing the
model’s accuracy and ensuring that its errors remain reason-
able even when the top-1 predictions are incorrect.

B.4. Detailed quantitative results

In this section we report the detailed experimental results
corresponding to the Tabs. 1, and 2 of the main paper, which
are essentially the summarized versions of the tables in the
supplementary material.

Base-to-New Generalization. In Tab. A4, we present the
expanded version of Tab. 1 of the main paper. Here, we
showcase the base-to-new generalization performances of 9
datasets. In detail, we report the seen class accuracies, i.e.,
the local and base accuracy, the unseen class accuracy or
the new accuracy, and the harmonic mean (HM) of the base
and new class accuracies, separately for each dataset. Note
that all the 9 datasets participates in the federated training
set up. The Tab. A4(a) is the same as Tab. 1 of the main
paper, and the Tabs. A4(b)-(h) reports the performance on
each dataset separately.

From these tables on individual datasets we observe that
our proposed FedMVP outperforms the baselines in major-
ity of the datasets, with a few exceptions. This demon-
strates that the improvement brought by FedMVP is con-
sistent across datasets, and the average performance in
Tab. A4(a) or Tab. 1 of the main paper is not dominated
by some particular dataset. In summary, we have demon-
strated that FedMVP can successfully generalize on the
base, i.e., combined classes from multiple clients, and com-
pletely new classes. Notably, FedMVP has achieved bet-
ter performances with significant margin on unseen classes,
where other FL methods fail to do so.

1 2 4 8
Number of shots

70

72

74

76

78

Ac
cu

ra
cy

 (%
)

CLIP
PromptFL
FedTPG
FedMVP

(a) Base-to-New

1 2 4 8
Number of shots

57

61

65

69

73

Ac
cu

ra
cy

 (%
)

CLIP
PromptFL
FedTPG
FedMVP

(b) MSST DG

Figure 4. Sensitivity to number of shots of images on (a) Base-
to-New and (b) MSST DG (DomainNet) setting.

Domain Generalization. In Tab. A5, A6 & A7 we
present the detailed results of the summarized results of Tab.
2 of the main paper on the DomainBed benchmark in MSST
DG setting. Here, the accuracy of a particular domain refer
that the model is tested on that domain, while trained on
rest of the domains. FedMVP has shown superior perfor-
mances over other FL methods in all of the datasets, except
Terra Incognita, where FedCLIP and FedMaPLe are able to
classify fine-grained animal classes better than others.

In addition, we have provided the detailed results on the
SSMT DG setting (reported in Tab. 2 of the main paper) for
the datasets PACS (in Tab. A8), OfficeHome in (Tab. A9),
VLCS (in Tab. A10), Terra Incognita (in Tab. A11) and Do-
mainNet (in Tab. A12). We also notice similar trend, with
our FedMVP outperforming the baselines consistently on
several datasets, with a few exceptions.
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Table A3. Comparison of effects of different prompting meth-
ods used in FedMVP on the Base-to-New, Multi-source Single-
target (MSST) and Single-source Multi-target (SSMT) Do-
main Generalization settings.

Method B2N MSST SSMT

Textual Prompting 73.56 66.26 65.89
Multi-modal Prompting 75.95 69.14 68.76
Visual Prompting (ours) 78.27 73.02 72.63

B.5. Detailed ablation studies
Number of shots of images. In Fig. 4, we present the per-
formance of FedMVP compared FL baselines across vary-
ing numbers of shots (or images) in base-to-new and MSST
DG settings. Both of the results clearly demonstrate that
FedMVP consistently outperforms others at all shot levels.
Interestingly, even with as few as 2 samples per class, Fed-
MVP can outperform the baselines with four times the data,
indicating better data efficiency.

Sensitivity to α hyperparamer in our FedMVP. In Fig.
5, we demonstrate that maintaining a constant value of
α = 10 yields consistent results across both the base-to-
new generalization and MSST DG tasks. It is evident from
the plot that as the value of α increases, the influence of the
cross-entropy loss term, Lce, diminishes. This reduction in
influence ultimately leads to less accurate backpropagation
of loss functions for classification task, highlighting the del-
icate balance between α and the model’s performance.
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Figure 5. Sensitivity to α hyperparamer in our FedMVP on
Base-to-New and MSST DG (DomainBed) setting.

Effect of LLMs in our FedMVP. We evaluate the perfor-
mance of our FedMVP using four different large language
models (LLMs), namely Llama-3.2-3B [10], Qwen2.5-14B
[36], Phi-4 [1], and GPT-4o [2], and present their results in
Table A13 for the MSST DG settings on both the PACS and
OfficeHome datasets. The results demonstrate that GPT-4o
outperforms the other models, achieving the highest perfor-
mance overall. This superior performance can be attributed
to its ability to capture more accurate and nuanced feature

descriptions. Interestingly, all of the evaluated LLMs signif-
icantly outperform the second-best competitor, FedCLIP, on
the MSST DG task. This highlights the importance of de-
tailed feature representations in the success of our FedMVP,
further emphasizing the value of precise feature description
for enhancing the performance.

Superiority of FedMVP in non-federated offline setting.
In Table A14, we present the performance of FedMVP,
demonstrating its potential to significantly improve vision-
language alignment, even in non-federated offline settings.
For comparison, we include a range of state-of-the-art meth-
ods, such as zero-shot CLIP (ZS-CLIP) [29] and several
recent non-federated prompt learning techniques, includ-
ing CoOp [41], CoCoOp [40], VPT [15], KgCoOp [37],
MaPLe [16], PromptSRC [17], StyLIP [4], CoPrompt [31],
TCP [38], DePT [39], and DeKgTCP [21]. These methods
are evaluated within the base-to-new generalization setting.
Our findings reveal that while DePT achieves the highest
performance on the base classes, our FedMVP outperforms
all the competitors when it comes to unseen new classes,
as well as the harmonic mean across both base and new
classes. This highlights the robustness of FedMVP, which
not only demonstrates a reduced tendency to overfit but also
exhibits superior adaptability to unseen samples during in-
ference. These results underscore the effectiveness of Fed-
MVP in generalizing across both known and novel data dis-
tributions, making it a promising approach for real-world
vision-language tasks.

Effect of different prompting methods. While using
the multi-modal prompts for multi-modal prompting (i.e.,
through both vision and text encoder) is an interesting pro-
posal, we find that it hurts performance (Table A3). We
postulate that tuning prompts through both encoders is re-
dundant as long as the prompts are multi-modal. While we
expected the textual prompting with multi-modal prompts
to work equally well as FedMVP, we find it further degrades
performance. This can be attributed to overfitting, as shown
in [37]. In addition, we can cache the text representations
once and backpropagate through the vision encoder alone
in FedMVP, which is computation friendlier.
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Table A4. Comparison of methods on the Base-to-new generalization setting. Tables (b)-(k) report the performance on each dataset.

(a) Average over 9 datasets (b) Caltech101

Method Local Base New HM Method Local Base New HM

ZS-CLIP [29] 76.72 70.51 75.78 74.24 ZS-CLIP [29] 97.57 96.97 93.89 96.12

FedOTP [20] 74.82 65.22 57.04 64.89 FedOTP [20] 95.72 94.83 86.46 92.14
FedCoCoOp [40] 81.46 73.76 66.00 73.20 FedCoCoOp [40] 96.71 94.41 91.59 94.19
FedVPT [15] 76.29 70.43 74.89 73.79 FedVPT [15] 96.23 95.31 94.53 95.35
FedCLIP [22] 76.87 71.04 75.06 74.24 FedCLIP [22] 97.71 97.29 94.21 96.38
FedMaPLe [16] 81.63 74.44 70.62 75.29 FedMaPLe [16] 97.00 95.41 90.06 94.06
FedKgCoOp [37] 78.38 72.18 75.87 75.39 FedKgCoOp [37] 97.65 97.24 94.79 96.54
PromptFL [11] 81.75 74.47 71.70 75.74 PromptFL [11] 96.97 96.69 92.79 95.44
FedTPG [28] 80.75 73.68 76.02 76.70 FedTPG [28] 97.59 97.08 95.24 96.63
FedMVP (Ours) 81.89 75.37 77.82 78.27 FedMVP (Ours) 97.85 97.73 95.48 97.01

(c) Flowers102 (d) FGVCAircraft

Method Local Base New HM Method Local Base New HM

ZS-CLIP [29] 82.58 72.18 77.94 77.33 ZS-CLIP [29] 30.59 27.55 35.81 30.96

FedOTP [20] 86.95 65.90 62.06 70.11 FedOTP [20] 28.35 24.01 15.53 21.23
FedCoCoOp [40] 94.00 77.49 65.63 77.36 FedCoCoOp [40] 35.21 31.93 22.67 28.89
FedVPT [15] 81.67 73.09 76.10 76.79 FedVPT [15] 31.36 27.92 32.67 30.51
FedCLIP [22] 79.72 71.51 75.96 75.58 FedCLIP [22] 31.41 28.45 34.07 31.14
FedMaPLe [16] 94.28 76.44 68.51 78.36 FedMaPLe [16] 35.83 31.39 32.34 33.08
FedKgCoOp [37] 84.59 72.11 77.06 77.59 FedKgCoOp [37] 33.68 29.79 34.01 32.38
PromptFL [11] 94.44 76.40 70.12 79.07 PromptFL [11] 36.29 32.41 30.95 33.07
FedTPG [28] 90.76 71.80 77.76 79.35 FedTPG [28] 34.68 30.82 35.18 33.44
FedMVP (Ours) 94.05 76.34 78.24 82.16 FedMVP (Ours) 35.50 32.54 37.32 35.01

(e) UCF101 (f) OxfordPets

Method Local Base New HM Method Local Base New HM

ZS-CLIP [29] 80.75 70.58 77.50 76.04 ZS-CLIP [29] 91.33 91.33 97.04 93.16

FedOTP [20] 70.99 59.61 51.54 59.68 FedOTP [20] 88.62 88.62 71.92 82.26
FedCoCoOp [40] 84.92 75.23 64.25 73.83 FedCoCoOp [40] 92.34 92.34 87.36 90.62
FedVPT [15] 82.43 71.32 77.05 76.66 FedVPT [15] 89.70 89.70 96.73 91.93
FedCLIP [22] 79.67 70.22 75.66 74.98 FedCLIP [22] 91.17 91.18 93.12 91.81
FedMaPLe [16] 84.17 75.12 68.68 75.47 FedMaPLe [16] 95.00 95.00 97.09 95.69
FedKgCoOp [37] 82.66 73.14 76.36 77.19 FedKgCoOp [37] 91.58 91.58 96.53 93.17
PromptFL [11] 86.13 75.65 70.60 76.94 PromptFL [11] 93.31 93.32 95.39 94.00
FedTPG [28] 85.64 74.89 76.64 78.79 FedTPG [28] 94.70 94.69 95.79 95.06
FedMVP (Ours) 85.41 75.92 80.25 80.34 FedMVP (Ours) 94.05 94.05 96.12 94.73

(g) Food101 (h) DTD

Method Local Base New HM Method Local Base New HM

ZS-CLIP [29] 94.39 90.16 91.25 91.90 ZS-CLIP [29] 53.13 53.01 58.21 54.68

FedOTP [20] 87.06 77.12 69.09 77.07 FedOTP [20] 69.21 69.21 55.31 63.86
FedCoCoOp [40] 93.24 87.57 84.95 88.45 FedCoCoOp [40] 68.63 68.63 45.77 58.83
FedVPT [15] 90.26 88.39 89.45 89.36 FedVPT [15] 52.06 52.06 60.13 54.50
FedCLIP [22] 94.23 89.57 90.67 91.45 FedCLIP [22] 56.48 56.48 60.39 57.72
FedMaPLe [16] 93.95 89.43 89.60 90.95 FedMaPLe [16] 68.28 68.28 46.61 59.12
FedKgCoOp [37] 94.19 89.94 91.81 91.95 FedKgCoOp [37] 58.76 58.75 59.61 59.04
PromptFL [11] 93.52 88.63 88.47 90.15 PromptFL [11] 68.67 68.67 52.74 62.39
FedTPG [28] 94.09 89.87 91.64 91.83 FedTPG [28] 63.62 63.62 60.51 62.55
FedMVP (Ours) 95.06 91.89 92.57 93.15 FedMVP (Ours) 67.32 67.32 64.96 66.51

(i) StanfordCars (j) SUN397

Method Local Base New HM Method Local Base New HM

ZS-CLIP [29] 71.51 63.44 74.90 69.61 ZS-CLIP [29] 88.66 69.41 75.46 77.05

FedOTP [20] 58.89 45.25 44.00 48.54 FedOTP [20] 87.54 62.39 57.42 66.87
FedCoCoOp [40] 76.62 66.51 66.40 69.53 FedCoCoOp [40] 91.44 69.76 65.36 73.94
FedVPT [15] 73.47 65.98 71.47 70.16 FedVPT [15] 89.43 70.13 75.92 77.69
FedCLIP [22] 72.32 64.42 75.04 70.30 FedCLIP [22] 89.10 70.22 76.42 77.82
FedMaPLe [16] 74.76 66.26 71.33 70.61 FedMaPLe [16] 91.40 72.66 71.33 77.47
FedKgCoOp [37] 71.89 64.33 75.71 70.32 FedKgCoOp [37] 90.38 72.72 76.94 79.34
PromptFL [11] 74.53 66.16 72.32 70.82 PromptFL [11] 91.93 72.34 71.89 77.70
FedTPG [28] 74.54 66.34 74.26 71.50 FedTPG [28] 91.11 74.01 77.13 80.10
FedMVP (Ours) 75.30 66.45 75.94 72.29 FedMVP (Ours) 92.44 76.09 79.51 82.11
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Table A5. Comparison of methods on the Multi-source Single-target (MSST) Domain Generalization setting. The results are reported
for the PACS and OfficeHome datasets.

PACS OfficeHome
Method A. Painting Cartoon Photo Sketch Average Art Clipart Product RealWorld Average

ZS-CLIP [29] 97.55 98.72 100.00 88.38 96.16 80.63 67.25 87.99 90.10 81.49

FedOTP [20] 93.49 93.75 98.00 77.61 90.71 71.98 65.33 83.08 85.28 76.42
FedCoCoOp [40] 81.43 92.05 81.67 85.07 85.06 78.54 66.73 90.18 90.24 81.42
FedTPG [28] 90.55 95.17 89.84 88.38 90.99 80.63 68.56 90.78 91.14 82.78
PromptFL [11] 96.42 97.72 99.80 87.53 95.37 79.61 66.70 90.42 90.22 81.74
FedKgCoOp [37] 96.48 97.77 99.83 87.58 95.42 79.67 66.87 90.48 90.26 81.82
FedMaPLe [16] 90.72 97.44 99.80 90.08 94.51 79.67 68.34 90.33 89.80 82.03
FedVPT [15] 95.73 96.37 100.00 89.32 95.36 80.94 68.21 88.56 89.34 81.76
FedCLIP [22] 97.56 98.72 100.00 88.89 96.29 80.50 67.26 89.05 90.15 81.74
FedMVP (Ours) 96.92 99.35 100.00 92.86 97.28 82.20 70.05 91.78 92.56 84.15

Table A6. Comparison of methods on the Multi-source Single-target (MSST) Domain Generalization setting. The results are reported
for the VLCS and Terra Incognita datasets.

VLCS Terra Incognita
Method Caltech Labelme Pascal-VOC Sun Average L38 L43 L46 L100 Average

ZS-CLIP [29] 100.00 68.88 89.24 75.02 83.29 20.14 33.64 29.19 52.93 33.98

FedOTP [20] 86.79 57.21 62.98 62.64 67.41 4.30 27.92 16.94 3.82 13.24
FedCoCoOp [40] 54.95 58.59 65.35 68.02 61.73 10.58 8.87 19.55 55.73 23.68
FedTPG [28] 88.92 61.48 62.98 65.69 69.77 46.11 19.14 21.78 20.12 26.79
PromptFL [11] 98.82 55.71 75.42 69.54 74.87 14.35 14.62 21.60 49.51 25.02
FedKgCoOp [37] 98.87 55.80 75.36 69.57 74.90 14.37 14.66 21.57 49.52 25.03
FedMaPLe [16] 99.53 52.70 71.08 63.86 71.79 30.10 33.64 28.81 52.66 36.30
FedVPT [15] 99.45 69.47 89.87 73.98 83.19 20.46 34.76 26.08 53.17 33.62
FedCLIP [22] 100.00 67.88 87.48 75.43 82.70 25.60 35.21 29.25 56.28 36.58
FedMVP (Ours) 100.00 70.15 90.93 79.40 85.12 23.95 34.95 33.19 57.34 37.36

Table A7. Comparison of methods on the Multi-source Single-target (MSST) Domain Generalization setting. The results are reported
for the DomainNet dataset.

DomainNet
Method Clipart Infograph Painting Quickdraw Real Sketch Average

ZS-CLIP [29] 70.88 45.94 66.27 14.19 83.22 62.25 57.13

FedOTP [20] 64.33 38.42 54.60 11.63 73.45 55.61 49.67
FedCoCoOp [40] 70.84 46.26 65.90 14.35 83.13 62.00 57.08
FedTPG [28] 71.35 46.03 66.10 13.96 81.50 61.97 56.82
PromptFL [11] 70.95 45.98 65.57 13.80 82.76 62.15 56.87
FedKgCoOp [37] 70.96 46.00 66.02 13.83 82.83 61.90 56.92
FedMaPLe [16] 72.91 49.93 67.13 16.20 82.73 64.36 58.88
FedVPT [15] 71.74 42.57 61.47 13.65 83.66 62.80 55.98
FedCLIP [22] 71.88 46.46 67.09 15.13 83.56 62.96 57.85
FedMVP (Ours) 73.93 52.06 69.16 18.50 86.64 66.72 61.17

Table A8. Comparison of methods on the Single-source Multi-target (SSMT) Domain Generalization setting. The results are reported
for the PACS dataset. Here Ap, Cr, Ph, Sk denote to Art painting, Cartoon, Photo and Sketch domains respectively.

Ap Cr Ph Sk
Method Cr Ph Sk Avg. Ap Ph Sk Avg. Ap Cr Sk Avg. Ap Cr Ph Avg.

ZS-CLIP [29] 98.72 100.00 88.38 95.70 97.55 100.00 88.38 95.31 97.55 98.72 88.38 94.88 97.55 98.72 100.00 98.76

FedOTP [20] 93.75 98.21 82.36 91.44 91.69 98.61 76.42 88.91 90.39 94.74 78.63 87.92 94.46 95.99 98.81 96.42
FedCoCoOp [40] 92.90 80.88 85.58 86.45 79.97 79.88 84.73 81.53 79.97 90.77 84.48 85.07 81.76 91.90 81.87 85.18
FedTPG [28] 93.89 84.46 88.63 88.99 89.90 91.03 88.04 89.66 91.04 95.31 87.87 91.41 90.88 95.60 91.83 92.77
PromptFL [11] 98.72 100.00 92.11 96.94 96.09 98.60 88.97 94.55 94.13 97.02 92.36 94.50 96.41 96.31 99.20 97.31
FedKgCoOp [37] 98.65 99.89 92.15 96.90 96.15 98.63 88.91 94.56 94.24 96.87 92.40 94.50 96.35 96.25 99.27 97.29
FedMaPLe [16] 97.59 99.80 90.25 95.88 90.39 99.80 90.16 93.45 90.88 97.73 90.08 92.89 90.23 97.30 96.81 94.78
FedVPT [15] 97.33 99.53 84.24 93.70 95.44 98.25 85.89 93.19 97.85 98.67 86.13 94.22 96.56 98.06 99.47 98.03
FedCLIP [22] 98.72 100.00 88.89 95.87 97.56 100.00 88.89 95.48 97.56 98.72 88.89 95.06 97.56 98.72 100.00 98.76
FedMVP (Ours) 99.02 100.00 93.15 97.39 96.45 100.00 92.19 96.21 96.87 98.91 92.56 96.11 97.49 99.40 100.00 98.96
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Table A9. Comparison of methods on the Single-source Multi-target (SSMT) Domain Generalization setting. The results are reported
for the OfficeHome dataset. Here Ar, Cl, Pr, Rw denote to Art, Clipart, Product and RealWorld domains respectively.

Ar Cl Pr Rw
Method Cl Pr Rw Avg. Ar Pr Rw Avg. Ar Cl Rw Avg. Ar Cl Pr Avg.

ZS-CLIP [29] 67.25 87.99 90.10 81.78 80.63 87.99 90.10 86.24 80.63 67.25 90.10 79.33 80.63 67.25 87.99 78.62

FedOTP [20] 63.33 80.97 83.59 75.96 69.78 80.36 80.75 76.97 68.00 62.33 84.75 71.69 71.29 64.87 84.37 73.51
FedCoCoOp [40] 36.98 55.21 54.37 48.85 52.20 53.70 53.99 53.30 57.00 39.98 60.74 52.57 52.20 37.44 56.65 48.76
FedTPG [28] 68.41 90.33 91.18 83.31 81.04 90.78 91.26 87.69 79.94 69.10 90.33 79.79 80.35 68.49 90.03 79.62
PromptFL [11] 66.79 89.95 90.80 82.51 80.49 90.26 90.64 87.13 79.26 66.25 90.34 78.62 80.77 65.95 89.12 78.61
FedKgCoOp [37] 66.83 90.02 90.85 82.57 80.41 90.29 90.56 87.09 79.45 66.12 90.56 78.71 80.61 65.72 89.02 78.45
FedMaPLe [16] 66.03 89.35 88.73 81.37 75.14 86.18 85.20 82.17 90.08 67.26 89.19 82.18 82.69 68.03 89.88 80.20
FedVPT [15] 68.05 88.25 89.50 81.93 78.46 84.67 90.89 84.67 79.32 68.94 90.35 79.54 80.87 66.30 86.29 77.82
FedCLIP [22] 65.95 88.07 90.49 81.50 79.95 88.90 90.57 86.47 80.91 68.26 91.41 80.19 80.22 66.72 87.99 78.31
FedMVP (Ours) 70.08 91.76 92.14 84.66 81.88 92.00 92.21 88.70 80.79 69.03 92.35 80.72 82.16 70.25 92.07 81.49

Table A10. Comparison of methods on the Single-source Multi-target (SSMT) Domain Generalization setting. The results are
reported for the VLCS dataset. Here C, L, V, S denote to Caltech, LabelMe, Pascal-VOC and SUN domains respectively.

C L V S
Method L V S Avg. C V S Avg. C L S Avg. C L V Avg.

ZS-CLIP [29] 68.88 89.24 75.02 77.71 100.00 89.24 75.02 88.09 100.00 68.88 75.02 81.30 100.00 68.88 89.24 86.04

FedOTP [20] 58.09 69.89 63.49 63.83 69.10 54.00 52.69 58.60 98.82 62.54 71.70 77.69 75.00 49.69 56.86 60.52
FedCoCoOp [40] 57.34 67.42 68.63 64.46 50.94 62.39 67.21 60.18 56.84 55.83 67.21 59.96 56.84 58.59 65.75 60.39
FedTPG [28] 70.89 81.93 62.84 71.89 46.22 56.56 59.08 53.95 98.35 65.12 72.49 78.65 79.95 51.69 66.43 66.02
PromptFL [11] 61.94 80.12 67.05 69.70 45.20 60.97 59.13 55.10 98.78 36.60 56.09 63.82 99.23 59.76 78.82 79.27
FedKgCoOp [37] 61.98 80.45 67.11 69.85 45.28 61.10 64.16 56.85 98.82 36.76 56.04 63.87 99.29 59.85 79.07 79.40
FedMaPLe [16] 66.00 76.11 65.99 69.37 87.50 57.65 59.59 68.25 99.29 53.20 66.90 73.13 99.53 56.34 76.90 77.59
FedVPT [15] 69.36 89.68 75.93 78.32 98.45 88.60 75.34 87.46 98.78 68.60 73.98 80.45 96.59 66.27 87.67 83.51
FedCLIP [22] 68.63 87.07 76.04 77.25 100.00 85.89 75.74 87.21 100.00 60.48 75.03 78.50 100.00 66.63 86.18 84.27
FedMVP (Ours) 70.93 90.40 78.13 79.82 100.00 90.54 78.37 89.64 100.00 70.06 78.93 83.00 100.00 69.44 88.51 85.98

Table A11. Comparison of methods on the Single-source Multi-target (SSMT) Domain Generalization setting. The results are
reported for the Terra Incognita dataset. Here L38, L43, L46, L100 denote to Location-38, Location-43, Location-46 and Location-100
domains respectively.

L38 L43 L46 L100
Method L43 L46 L100 Avg. L38 L46 L100 Avg. L38 L43 L100 Avg. L38 L43 L46 Avg.

CLIP [29] 33.64 29.19 52.93 38.59 20.14 29.19 52.93 34.09 20.14 33.64 52.93 35.57 20.14 33.64 29.19 27.66

FedOTP [20] 27.42 17.05 1.84 15.44 28.12 19.34 9.62 19.03 0.38 28.50 3.82 10.90 0.99 27.76 16.45 15.06
FedCoCoOp [40] 14.00 14.71 51.50 26.74 6.59 29.41 54.98 30.33 9.86 7.87 46.93 21.55 10.27 14.17 16.50 13.65
FedTPG [28] 20.21 13.29 10.98 14.83 38.46 15.68 11.32 21.82 45.42 12.34 15.41 24.39 46.10 19.47 21.40 28.99
PromptFL [11] 19.97 13.40 45.70 26.36 21.81 11.38 24.21 19.13 19.73 14.08 57.50 30.44 29.73 15.08 17.43 20.75
FedKgCoOp [37] 19.94 13.44 45.72 26.37 21.83 11.42 24.22 19.16 19.73 14.09 57.55 30.46 29.78 15.14 17.48 20.80
FedMaPLe [16] 34.38 28.11 44.61 35.70 24.64 20.75 46.59 30.66 30.38 30.99 48.09 36.48 34.16 33.55 26.85 31.52
FedVPT [15] 32.75 29.75 48.64 37.05 18.45 30.56 50.58 33.20 18.93 30.67 48.18 32.59 16.59 33.08 28.57 26.08
FedCLIP [22] 34.38 27.56 52.87 38.27 25.67 26.31 58.73 36.90 24.81 36.70 57.78 39.76 27.13 38.61 26.74 30.83
FedMVP (Ours) 33.90 33.08 55.34 40.77 26.78 33.10 56.16 38.68 23.64 34.39 55.67 37.90 25.43 34.28 31.32 30.34
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Table A12. Comparison of methods on the Single-source Multi-target (SSMT) Domain Generalization setting. The results are
reported for the DomainNet dataset. Here Cl, Ig, Pt, Qd, Re, Sk denote to Clipart, Infograph, Panting, Quickdraw, Real and Sketch
domains respectively.

Cl Ig Pt
Method Ig Pt Qd Re Sk Avg. Cl Pt Qd Re Sk Avg. Cl Ig Qd Re Sk Avg.

ZS-CLIP [29] 45.94 66.27 14.19 83.22 62.25 54.37 70.88 66.27 14.19 83.22 62.25 59.36 70.88 45.94 14.19 83.22 62.25 55.30

FedOTP [20] 30.68 44.32 8.68 58.81 46.08 37.71 51.16 42.96 7.56 57.81 45.28 40.95 52.28 30.93 8.20 59.04 46.35 39.36
FedCoCoOp [40] 50.51 67.71 15.62 83.81 64.72 56.47 71.87 66.02 14.56 84.15 63.81 60.08 71.36 48.02 13.04 82.76 63.78 55.79
FedTPG [28] 50.02 67.06 12.70 84.24 63.31 55.47 71.92 67.36 13.12 84.26 63.79 60.09 72.58 50.12 12.55 84.24 63.44 56.59
PromptFL [11] 50.27 67.48 15.60 83.55 64.52 56.28 71.59 65.95 14.25 83.89 63.62 59.86 71.52 47.91 14.67 82.84 63.71 56.13
FedKgCoOp [37] 50.35 67.52 15.68 83.70 64.61 56.37 71.72 65.98 14.27 83.94 63.67 59.92 71.58 47.78 14.52 82.88 63.62 56.08
FedMaPLe [16] 50.35 66.69 15.74 82.99 63.59 55.87 71.37 66.51 15.74 83.15 63.67 60.09 71.70 48.82 14.30 82.79 62.41 56.00
FedVPT [15] 47.65 66.50 14.94 83.65 63.01 55.15 71.41 66.36 14.63 80.45 60.70 58.71 67.46 42.84 12.57 80.82 60.40 52.82
FedCLIP [22] 45.72 66.62 14.83 83.17 64.42 54.95 71.34 66.63 14.81 83.17 62.42 59.67 71.37 45.72 14.82 83.17 62.41 55.50
FedMVP (Ours) 51.26 69.72 18.96 86.53 65.92 58.48 73.47 69.74 18.25 85.94 65.48 62.58 74.00 51.38 18.95 85.73 64.78 58.97

Qd Re Sk
Method Cl Ig Pt Re Sk Avg. Cl Ig Pt Qd Sk Avg. Cl Ig Pt Qd Re Avg.

ZS-CLIP [29] 70.88 45.94 66.27 83.22 62.25 65.71 70.88 45.94 66.27 14.19 62.25 51.91 70.88 45.94 66.27 14.19 83.22 56.10

FedOTP [20] 48.55 29.38 40.06 55.21 43.48 43.34 51.93 29.53 43.81 8.52 45.23 35.80 52.54 30.88 44.26 8.45 59.03 39.03
FedCoCoOp [40] 71.45 49.26 67.34 81.87 63.67 66.72 71.66 48.70 67.29 13.04 63.78 52.89 72.34 49.98 67.50 14.89 83.96 57.73
FedTPG [28] 71.52 50.00 67.87 83.47 64.64 67.50 72.48 49.75 66.97 12.26 62.88 52.87 72.81 50.14 67.41 13.00 84.22 57.52
PromptFL [11] 71.29 49.01 67.24 82.09 63.76 66.68 71.47 48.96 67.14 13.25 63.54 52.87 72.16 50.41 67.35 15.30 83.87 57.82
FedKgCoOp [37] 71.33 49.15 67.13 82.14 63.85 66.72 71.52 48.87 67.19 13.34 63.65 52.91 72.08 50.49 67.42 15.37 83.74 57.82
FedMaPLe [16] 68.63 45.32 61.38 78.03 59.69 62.61 72.07 49.42 67.60 12.63 63.24 52.99 72.96 49.64 68.09 16.21 83.75 58.13
FedVPT [15] 71.70 44.28 60.73 79.44 62.83 63.80 66.58 44.78 61.22 15.29 60.57 49.69 67.27 46.37 61.00 12.78 81.68 53.82
FedCLIP [22] 71.45 45.78 66.64 83.20 62.48 65.91 71.32 45.73 66.61 14.83 62.43 52.18 71.37 45.72 66.59 14.81 83.18 56.34
FedMVP (Ours) 73.69 51.90 68.72 84.50 65.14 68.79 72.57 51.72 68.91 18.59 65.28 55.41 72.70 50.63 68.37 18.29 85.59 59.12

Table A13. Comparison of effects of different LLMs used in FedMVP on the Multi-source Single-target (MSST) Domain General-
ization setting. The results are reported for the PACS and OfficeHome datasets.

PACS OfficeHome
Method A. Painting Cartoon Photo Sketch Average Art Clipart Product RealWorld Average

Llama-3.2-3B [10] 96.34 98.92 99.67 92.21 96.79 81.84 69.94 91.84 92.30 83.98
Qwen2.5-14B [36] 96.20 99.04 100.00 93.08 97.08 82.05 69.80 91.63 92.18 83.92
Phi-4 [1] 96.67 98.78 99.46 92.17 96.77 82.04 70.02 91.54 92.45 84.01
GPT-4o [2] 96.92 99.35 100.00 92.86 97.28 82.20 70.05 91.78 92.56 84.15
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Table A14. Comparison of methods on the Base-to-new generalization task in non-federated offline setting.

CLIP CoOp CoCoOp VPT KgCoOp MaPLe PromptSRC StyLIP CoPrompt TCP DePT DeKgTCP FedMVPMethod Sets ICML21 IJCV22 CVPR22 ECCV22 CVPR23 CVPR23 ICCV23 WACV24 ICLR24 CVPR24 CVPR24 ICLR25 -

Base 69.34 82.69 80.47 82.11 80.73 82.28 84.12 83.22 84.00 84.13 85.18 84.96 85.00
New 74.22 63.22 71.69 71.73 73.61 75.14 75.02 75.94 77.23 75.36 76.17 76.38 77.85Average

H 71.70 71.66 75.83 76.57 77.00 78.55 79.31 79.41 80.48 79.51 80.42 80.44 81.27

Base 72.43 76.47 75.98 75.90 75.83 76.66 77.75 77.15 77.67 77.27 78.20 77.40 78.11
New 68.14 67.88 70.43 68.10 69.96 70.54 70.70 71.34 71.27 69.87 70.27 69.20 72.26ImageNet

H 70.22 71.92 73.10 71.79 72.78 73.47 74.06 74.13 74.33 73.38 74.02 73.07 75.07

Base 96.84 98.00 97.96 98.03 97.72 97.74 98.13 98.23 98.27 98.23 98.57 98.64 98.48
New 94.00 89.81 93.81 94.30 94.39 94.36 93.90 94.91 94.90 94.67 94.10 95.20 94.43Caltech101

H 95.40 93.73 95.84 96.13 96.03 96.02 95.97 96.54 96.55 96.42 96.28 96.89 96.41

Base 91.17 93.67 95.20 95.13 94.65 95.43 95.50 95.96 95.67 94.67 95.43 94.47 95.70
New 97.26 95.29 97.69 96.47 97.76 97.76 97.40 98.14 98.10 97.20 97.33 97.76 98.45OxfordPets

H 94.12 94.47 96.43 95.80 96.18 96.58 96.44 97.04 96.87 95.92 96.37 96.09 97.06

Base 63.37 78.12 70.49 71.63 71.76 72.94 78.40 75.19 76.97 80.80 80.80 81.18 80.95
New 74.89 60.40 73.59 72.20 75.04 74.00 74.73 74.46 74.40 74.13 75.00 74.75 74.67StanfordCars

H 68.65 68.13 72.01 71.92 73.36 73.47 75.52 74.82 75.66 77.32 77.79 77.83 77.68

Base 72.08 97.60 94.87 95.93 95.00 95.92 97.90 96.54 97.27 97.73 98.40 98.58 98.51
New 77.80 59.67 71.75 70.37 74.73 72.46 76.77 73.08 76.60 75.57 77.10 75.18 78.76Flowers102

H 74.83 74.06 81.71 81.18 83.65 82.56 86.06 83.19 85.71 85.23 86.46 85.30 87.53

Base 90.10 88.33 90.70 89.80 90.50 90.71 90.63 91.20 90.73 90.57 90.87 90.73 91.35
New 91.22 82.26 91.29 90.37 91.70 92.05 91.50 92.48 92.07 91.37 91.57 91.55 93.04Food101

H 90.66 85.19 90.99 90.08 91.09 91.38 91.06 91.84 91.40 90.97 91.22 91.14 92.19

Base 27.19 40.44 33.41 35.90 36.21 37.44 42.30 37.65 40.20 41.97 45.70 45.20 42.38
New 36.29 22.30 23.71 30.37 33.55 35.61 36.97 35.93 39.33 34.43 36.73 35.09 39.82FGVCAircraft

H 31.09 28.75 27.74 32.90 34.83 36.50 39.46 36.77 39.76 37.83 40.73 39.51 41.06

Base 69.36 80.60 79.74 79.50 80.29 80.82 82.83 82.12 82.63 82.63 83.27 82.52 83.41
New 75.35 65.89 76.86 76.17 76.53 78.70 79.00 79.95 80.03 78.20 78.97 78.30 79.50SUN397

H 72.23 72.51 78.27 77.80 78.36 79.75 80.87 81.02 81.31 80.35 81.06 80.35 81.41

Base 53.24 79.44 77.01 80.90 77.55 80.36 82.60 81.57 83.13 82.77 84.80 83.80 83.28
New 59.90 41.18 56.00 52.73 54.99 59.18 57.50 61.72 64.73 58.07 61.20 59.66 61.94DTD

H 56.37 54.24 64.85 63.85 64.35 68.16 67.80 70.27 72.79 68.25 71.09 69.70 71.04

Base 56.48 92.19 87.49 95.83 85.64 94.07 92.40 94.61 94.60 91.63 93.23 94.02 94.33
New 64.05 54.74 60.04 65.03 64.34 73.23 68.43 74.06 78.57 74.73 77.90 81.69 81.59EuroSAT

H 60.03 68.69 71.21 77.48 73.48 82.30 78.63 83.08 85.84 82.32 84.88 87.42 87.50

Base 70.53 84.69 82.33 84.63 82.89 83.00 86.93 85.19 86.90 87.13 87.73 88.06 88.46
New 77.50 56.05 73.45 72.90 76.67 78.66 78.33 79.22 79.57 80.77 77.70 81.77 81.92UCF101

H 73.85 67.46 77.64 78.33 79.65 80.77 82.41 82.10 83.07 83.83 82.46 84.80 85.06

12



References
[1] Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien Bubeck,
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