A. Implementation details

During post-training, we fine-tune only the last three trans-
former blocks of the pretrained ViT encoder f(-) while
keeping the remaining layers frozen. Our MLP projector
h(-) consists of two linear layers with a non-linear activa-
tion function GELU [35]. Hidden feature dimension is set
to 7D and fixed output dimension 6144. /5-normalization
is applied at the output of the MLP. We set the temperature
parameter 7 of the softmax operator to 0.07 (see Tab. 7).
Our ablation study demonstrates that the method is robust
to the choice of temperature, with values ranging from 0.03
to 0.09 yielding similar performance on the PascalVOC
dataset. During post-training our support set consists of
1 positive and 7 “distractor” examples (8 total examples).
During training, we use the AdamW [49] optimizer with a
learning rate of 2.25 x 10~7 and a weight decay of 0.05. We
train for 5 epochs. We employ cosine learning rate sched-
ule.

Temperature 0.09 0.07 0.03
PascalVOC  80.8 81.0 81.0

Table 7. Ablation of temperature 7 during post-training.

Generation time of pseudo semantic segmentation la-
bels. COCO pseudo-label generation required 17 hours
on 1 V100 GPU, with DiffCut inference as the bottleneck
due to its current lack of batch processing optimization and
suboptimal GPU utilization. However, this one-time offline
process can be used to post-train multiple encoders.

B. Additional quantitative results

In-context scene understanding: impact of memory size.
In Fig. 6, we analyze the effect of memory size on in-
context semantic segmentation using the ADE20K dataset
(full) for DINOV2R, NeCo, and our DIP. Results show
that DIP outperforms both DINOv2R and NeCo across all
memory sizes.

Linear segmentation. Tab. 8 presents linear segmenta-
tion results on COCO and ADE20K benchmarks. For fair
comparison, we re-evaluated both DINOv2R and NeCo us-
ing our implementation, ensuring consistent evaluation pro-
tocols across all methods. Our approach consistently im-
proves over the strong DINOV2R baseline and shows im-
provements over NeCo. Notably, with the ViT-B/14 back-
bone on COCO, our method achieves 86.7 mloU, surpass-
ing DINOV2R by 2.0 points.

Method Backbone COCO ADE20K
DINOv2R ViT-S/14 82.1 33.5

NeCo ViT-S/14 81.1(—1.0) 33.1(—0.4)
DIP (ours) ViT-S/14 82.6 (+0.5) 33.7 (+0.2)
DINOv2R ViT-B/14  85.5 38.6

NeCo ViT-B/14 852 (—0.3) 39.5(+0.9)
DIP (ours) ViT-B/14  86.7 (+2.0) 39.5 (+0.9)

Table 8. Linear segmentation results on COCO and ADE20K
datasets. All methods (DINOv2R, NeCo, and DIP) are evaluated
using our implementation. DIP consistently improves over our
base model DINOV2R and outperforms NeCo across both datasets.
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Figure 6. In-context scene understanding: impact of mem-
ory size. Semantic segmentation performance on ADE20K (full
dataset) using dense nearest neighbor retrieval, evaluated across
varying memory sizes.

Method Backbone | PziscalV(iC 1

8 64 128
DINOv2R ViT-B 79.0 753 676 60.3
DIP (ours) ViT-B 82.1 79.6 751 70.1
DINOv2R ViT-L 769 728 614 544
DIP (ours) ViT-L 81.1 78.7 70.0 64.6

Table 9. Larger backbones evaluation We show performance of
DIP and DINOV2R on a larger backbone ViT-L. Dense nearest
neighbor retrieval performance (mloU) for semantic segmentation
on PascalVOC across varying proportions of training data.

Larger backbones. While ViT-L (DINOv2) underper-
forms ViT-B in in-context segmentation [3, 57], our method
still improves results with ViT-L, as shown in Tab. 9. This
demonstrates DIP’s scalability across backbone sizes.

Nearest Neighbors (NN) vs. Two Crops We compare
two strategies for creating positive examples: (1) retriev-
ing nearest neighbors using DINOvV2R image-wise features
(NN) and (2) using two random crops from the same im-



PascalVOC ADE20K
1 1 1 1 1 1 1

=

8 64 128 8 64 128
Two Crops  79.5 75.1 67.7 61.2 394 332 24.7 224
NN 81.0 777 714 659 397 337 25.6 23.2

Table 10. Additional ablation on the construction of positive
examples. Dense nearest neighbor retrieval performance (mloU)
for semantic segmentation on PascalVOC and ADE20K across
varying proportions of training data.

age. NN consistently outperforms Two Crops, with the per-
formance gap widening when fewer training examples are
available (see Tab. 10). This scalability advantage justifies
our design choice.

C. Additional qualitative results

We present additional examples of automatically con-
structed in-context tasks in Fig. 7, showing the quality of
our pseudo-labeling approach. We display query images
paired with their corresponding positive support examples,
along with both pseudo-labels and ground truth labels, in-
cluded only for comparison.



(a) Query image (b) Pseudo labels (c) GT labels (d) Positive image (e) Pseudo labels (f) GT labels

Figure 7. Examples of automatically constructed in-context scene understanding tasks. Each row shows a query image and its
corresponding positive support example. (a) and (b) display the query image and its pseudo segmentation labels, while (d) and (e) show
the positive support image and its pseudo segmentation labels. (c) and (f) present the ground truth segmentation labels for the query and
positive images, respectively, included only for comparison with the pseudo labels.



	Implementation details
	Additional quantitative results
	Additional qualitative results

