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1. Background

To use 3D Gaussian Splatting for soft-rasterization of hair,

we force Gaussians to lie on line segments. We define the

mean and covariance matrix of each individual Gaussian as:

µij =
1

2

(

pij + pi,j+1

)

, Cij = EijDij

(

EijDij

)T
. (1)

Here, Eij = {bij , tij , nij} is a TBN basis associated with

the strand curve, bij = vij/|vij |, vij = pi,j+1 − pij , where

vij denotes the segment vector and bij its normalized direc-

tion vector. Dij is defined as Dij = diag(dij , ϵ, ϵ), where

dij is set to be proportional to the length of vij and ϵ denotes

a small value. Such parametrization allows effective propa-

gation of photometric information into hairstyle geometry.

2. Training details

2.1. Strands parametrization

For basis calculation, we launch the Incremental PCA

method on all hairstyles from the PERM [4] dataset. We

use 200 points for each strand to provide more degrees of

freedom for hairstyles. We found that PCA method can ef-

fectively compress each strand of size 200 × 3 into 64
dimensions.

2.2. Optimization details

We use 4 NVIDIA A100 GPUs to train our entire method,

which takes a total of 5 days and 19 hours.

For the coarse stage, we optimize the model for 420, 000
iterations (around 73 hours) with an effective batch size of

32 using AdamW [6] with a weight decay of 0.001 and

a learning rate of 0.0001. We use the following weights:

¼PCA = 0.1, ¼dir = 0.1, ¼curv = 1, and ¼mask = 0.0001.

For the fine stage, we first fine-tune the fine branch

with the ground-truth PCA map for the first 10 components

for 200,000 iterations or around 45 hours. We initialize

the Encoder and Decoder architectures using the pretrained

weights from the coarse branch. For optimization, we use

the following weights: ¼PCA = 10, ¼dir = 0.1, ¼curv = 0.1,

and ¼mask = 0.0001. We also calculate visibility weights

for points and apply a 3 × weight for points, direction, and

curvature losses.

Then, we finetune the coarse and fine branches together

for 80,000 iterations on synthetic data (around 8-9 hours).

For optimization, we use the following weights: ¼PCA = 1,

¼dir = 0.1, ¼curv = 0.1, and ¼mask = 0.0001.

Finally, we optimize the model on mixed dataset with

real and synthetic data for 16,000 iterations (around 12

hours). To balance the gradient propagation from real

and synthetic data, we weight the photometric losses with

weight r = 0.5. We use L1 distance to calculate the

depth loss. We use the following parameters: ¼PCA = 0.1,

¼dir = 0.1, ¼curv = 0.1, ¼mask = 0.0001, width for each

gaussian = 0.005, ¼depth = 0.01, ¼pen = 0.1, ¼seg =
10, ¼dirmap = 5.

During the inversion stage, we optimize the hairstyle

for 400 iterations on a single A100, which takes around 10

minutes. We use the following parameters: width for each

gaussian is set to 0.00035, upsampling from the texture size

64 × 64 to 256 × 256, ¼seg = 1, ¼dirmap = 0.8, ¼pen =
0.3, ¼depth = 0.01.

2.3. Preprocessing

We align all synthetic hairstyles to the same bust model. To

simplify the training, we ensure that real and synthetic data

share the same scale range. This is achieved by applying an

affine transformation to the input image, using facial key-

points estimated from both the real image and the rendered

bust model. For real and synthetic data, we extract depth

using Depth Pro [1]. We normalize the depth map values

within the hair silhouette by following these steps: (i) we

erode the hair segmentation mask to reduce boundary arti-

facts; (ii) we clip the depth values using the 2nd and 98th

quantiles; and (iii) perform min-max normalization.
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Image Gabor+Dirmap Dirmap

Figure 1. Combination of Gabor map with Direction map from

Hairstep [13]. Although the model predicts correct directions for

frontal views, it produces incorrect results for back views.

Figure 2. Synthetic dataset is generated by rendering ground-

truth hairstyles in Blender.

2.4. Interpolation

To obtain interpolated hairstyles from our guiding strands

during the inversion stage, we utilize an upsampling method

with a weighted combination of nearest and bilinear inter-

polation following HAAR [9], adapted to operate in 3D

space. This results in around 10,000 strands during opti-

mization. For visualization purposes, we repeat this proce-

dure and increase up to 30,000 strands.

3. Evaluation details

3.1. Baselines

We compare our method with Hairstep [13] using the

original publicly available code. Results for NeuralHD-

Hair [11] and PERM [4] were provided by the respective

authors. For Hairnet [14], we use images extracted from

the Hairstep [13] paper, and do not compare on more sam-

ples, as the performance of this model is significantly worse

than other existing methods. Finally, in Figure 3, we com-

pare with Hairmony [7] on several images and use the cor-

responding results extracted from their paper.

All baselines use augmented versions of the USC-

HairSalon [5] dataset. The PERM dataset is constructed

similarly, so the synthetic datasets used here and in prior

work are comparable. Retraining all models under identical

conditions is not feasible since prior works did not release

training code.

Quantitative comparison. For quantitative comparison

of our method with the baselines, we render synthetic

hairstyles using Blender [2] (see images in Figure 2).

Inference time. Perm [4] is an optimization-based

method based on a retrieval procedure that could take

around 4 hours. Hairstep [13] takes around 3-5 minutes to

reconstruct 30,000 strands on an NVIDIA RTX3090. Our

method employs 400 optimization iterations, requiring ap-

proximately 10 minutes on an A100, yet it achieves superior

strand quality compared to Hairstep [13] within the same

time frame, see “Ourssame cost” in Figure 6 for comparison

under the same computation budget.

Visualization. To show rendering results, we use Unreal

Engine [3]. For NeuralHDHair [11] we have the 60,000

strands, while for Hairstep [13] and our around 30,000. For

PERM [4] original number of strands from the authors was

used, as additional interpolation may lead to worse results.

4. Applications

4.1. Multi­view optimization

In this section, we show more results of integrating our prior

model in the multi-view reconstruction scenario. Rather

than relying solely on the direction map, we enhance it with

Gabor orientation maps to incorporate finer details. Since

the direction map estimator from Hairstep [13] struggles

with accurate predictions from side and back views (com-

pare Figure 1, first row) as well as loose high-frequency

details from frontal, we propose using an augmented Gabor

direction map (see “Gabor+Dirmap” in Figure 1) for near-

frontal views and an undirected Gabor map for other view-

points. The optimization process follows the same weight-

ing scheme as for the single-view scenario, with the only

difference that for the orientation loss we compute either

Ldir or Lundir depending on the view.

During optimization, we input a near-frontal image into

the encoder to extract more accurate features, while super-

vising from other views using the same Gaussian Splatting-

based procedure with soft-rasterization of hair strands. At

each iteration, we randomly sample a single view for su-

pervision. We also experimented with rendering and apply-

ing weighted loss from all views simultaneously, but this

slowed down the training.

In Figure 11, we show reconstruction results of our

method using different numbers of views, such as 1, 3, 8,

and 32 on H3DS dataset [8]. We compare our approach to

Gaussian Haircut (GH) [12] for the 8- and 32-view cases,

as GH fails to produce reasonable results with only 1 or 3



Image Hairmony [7] Ours

Figure 3. Comparison of our model with retrieval-based method

Hairmony [7] .

views. For a fair comparison, we lunch GH using its official

repository and default configuration settings. Our opti-

mization process involves 400 steps for the 1 view case, 800
steps for 3 views, and 1600 steps for 8 and 32 views. Run-

ning all 1600 steps takes approximately 45 minutes, signif-

icantly faster than GH, which takes around 10 hours.

In Figure 11, GH has some freezing issues with strands

that happen because of direct optimization for directions in

3D space. Also, it has some issues with the scalp mask,

which may be resolved with an improved scalp estimator al-

gorithm. Our method has some smoothing in the results be-

cause of the use of interpolation. This could be potentially

resolved by using a learnable neural interpolation scheme

during the optimization stage. We notice an improved curly

geometry for our method (see Figure 11, last 3 rows). While

the hairstyle in GH appears more detailed, some strands ex-

hibit noisy structures. Potentially, both approaches could be

combined to achieve more detailed hair while staying within

the hairstyle prior to prevent unrealistic structures.

4.2. Simulations

For simulation results, we use Unreal Engine [3]. To do

that, we convert hairstyles into Alembic format and import

as a groom into Unreal. For simulation, we use around

30, 000 strands.

5. Additional experiments

5.1. Reconstruction results

More baselines. In Figure 3, we show a comparison with

the retrieval-based method Hairmony [7]. While retrieval-

based methods could predict general hair style, they do not

contain any personalized details and are restricted by the

diversity and quality of the dataset. We show an extended

comparison with Hairstep [13] and NeuralHDHair [11] in

Image Ground-truth

w Mixing w/o Mixing

Figure 4. Mixing strategy. The performance of the Hairstyle prior

model with and without mixing strategy. The model trained on real

images can better regress the hair silhouette and orientations. The

color in the image corresponds to the direction in the orientation

maps.

Figures 19, 20.

Back views. We show additional visualization results for

back views of our method, Hairstep [13], and Neural-

HDHair [11] (see Figure 8). While NeuralHDHair [11]

produces accurate and smooth results for back views, the

method lacks details from the frontal view. Hairstep [13]

reconstructs unrealistic back views, especially for short

hairstyles (see Figure 13). Our method generates more re-

alistic results for all types of hair (see Figures 12, 13).

Wavy hairstyles. In Figure 12, we show a comparison

with Hairstep [13] on wavy hairstyles. While our method

has problems in the accurate estimation of curls from a sin-

gle image, it outperforms Hairstep [13] in terms of quality.

Out-of-distribution samples. We present results of our

method on out-of-distribution samples (Figures 13, 14, 15),

demonstrating its ability to reconstruct hairstyles for por-

traits, movie and cartoon characters, as well as drawings.

More results. Finally, we show our reconstruction results

on more images (see Figures 17, 16, 18). Note that bald-

ness artifacts or inaccuracies in hairstyles arise from failures

in the camera or segmentation estimators. Additional cam-

era fine-tuning and holistic reconstruction may resolve this

problem.



Image Ours w/o prior3D w/o priorpca w/o Enc

Figure 5. Hair reconstruction stage. We demonstrate the importance of optimizing in Hairstyle prior space of the model for single-view

inversion (compare “Ours” to “w/o prior3D” and “w/o priorpca”). Also, we show a scenario when only the decoder is optimized while

the encoder is kept fixed (see “w/o Enc”).

Image Hairstep Ourssame cost Ours

Figure 6. Comparison with Hairstep under the same computa-

tional cost.

chamfer pts ↓ chamfer angle ↓ angle error ↓ mask ↓ Lundir ↓
coarse branch 0.00026 0.110 15.81 0.517 0.735

w/o depth input 0.00031 0.114 16.33 0.548 0.737

w/o dir 0.00028 0.112 15.95 0.553 0.737

Table 1. Extended ablation on losses and usage of depth repre-

sentation as input during the training of the coarse branch.

chamfer pts ↓ chamfer angle ↓ angle error ↓ mask ↓ Lundir ↓
hybrid training 0.00030 0.143 18.03 0.405 0.695

Priorw/o dir 0.00028 0.140 17.84 0.418 0.723

Priorw/o penetr 0.00030 0.139 17.60 0.412 0.689

Priorw/o silh 0.00033 0.141 17.96 0.571 0.710

Table 2. Contribution of losses during training prior model.

5.2. Extended ablation

We present an extended version of our ablation study in Fig-

ures 5, 7, 9, 10 and Tables 1, 2. First, we show the ablation

study on losses and input representation used during train-

ing the coarse branch, the Hybrid model, and during the

inversion stage. Then, we show more reconstruction results

obtained using a Hairstyle prior that is trained on a mixture

of synthetic and real images, and without it. To disentangle

the contribution of rendering loss from the mixture strategy,

we train our prior model with rendering loss computed only

on synthetic data. Also, we clarify the importance of opti-

mization in the learned Hairstyle prior space compared to

direct optimization of directions in 3D space or in PCA hair

map. Finally, we conduct an experiment with and without

the optimization of the encoder during inversion.

Coarse stage. In Table 1, we show an extended ablation

of using depth as input and the usage of direction loss during

training the coarse branch model. Without depth input or

direction loss, we see the degradation of quality across all

metrics.

Importance of losses. In Figure 7, we extend an abla-

tion study on losses for (1) the optimization phase (opt∗

with our final Hybrid model), and (2) Hybrid model train-

ing (Prior∗; results are shown w/ opt which uses all losses).

During both training and optimization, the orientation loss

(dir) plays a critical role in improving fine-grained strand

details (see close-ups). The silhouette (silh) improves pixel

alignment. Removing depth maps worsens the results (see

“optw/o depth”). Our method is also robust to depth corrup-

tion (see “optw/ blur depth”, where we blurred the depth maps).

Lastly, penetration loss leads to better internal geometry.

In Table 2, we calculate the metrics on synthetic and real

data with omitted losses during training the Hybrid model.

Surprisingly, omitting penetration loss improves metrics on

synthetic data, but results in increased mask loss on real

data. Excluding direction or silhouette loss produces bad

results on real data.
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Figure 7. Extended ablation on losses. We show the importance of mixing strategy by training a prior model using rendering loss com-

puted only on synthetic data (see Priorsyn only). Also, we provide an ablation on losses during hybrid model training with post optimization

using all losses, and their contribution during optimization with our final Hybrid model. Lastly, we analyze robustness results of our

method with blurred depth as input.

Importance of Mixing strategy. In Figure 4, we show

results of our Hairstyle prior before (“w/o Mixing”) and af-

ter training (“w Mixing”) on a mix of synthetic and real

data. Model “w Mixing” can provide better hairstyle ini-

tialization in terms of hair silhouette and orientations for

the inversion stage. Note, here we rasterize orientations of

obtained hairstyles using OpenGL [10] and color them for

visualization purposes.

In Figures 9, 10, we show more results of inversion

in the hairstyle prior space trained with (see “Ours”) and

without mixing strategy (see “w/o Mixing”). The model

that is not trained on real images results in more unrealis-

tic structures and penetrations. To disentangle the contribu-

tion of mixing strategy from rendering loss, in Figure 7 (see

“Priorsyn only”), we show inversion results in the space of a

prior model trained with rendering loss computed only on

synthetic data.

Importance of optimization in prior space. In the pro-

posed “Ours” configuration, we jointly optimize both the

encoder and decoder architectures. The result of the opti-

mization hairstyle in the 3D space after retrieving the coarse

structure from the Hairstyle prior noted as “w/o prior3D”.

Compared to our optimization setup, we decrease the learn-

ing rate to 0.00001 while doing 400 steps for inversion.

Using more steps does not improve the quality of results.

While this approach fails for wavy hairstyles, it produces

realistic results for simpler, straight hairstyles, see Fig-

ure 5. Additionally, instead of optimizing the directions

of the strands in the 3D space, as done in Gaussian Hair-

cut [12], we optimize a PCA texture map, initialized from

the hairstyle prior (see “w/o priorpca”). Interestingly, this

method introduces noisy artifacts in the generated strands.

Optimization of Encoder. We examine optimization

within our prior space while keeping the encoders frozen

(see Figure 5, “w/o Enc”). We find that this configuration

underperforms compared to jointly optimizing both the en-

coder and decoder architectures.



Image Ours Hairstep NeuralHDHair

Figure 8. Back view comparison. Comparison of back view geometry of reconstructions obtained by our method, Hairstep [13] and

NeuralHDHair [11].



Image Ours w/o Mixing

Figure 9. Extended ablation on importance of training on synthetic and real data. Results of “Ours” correspond to columns 2-4, while

“w/o Mixing” to 5-7.



Image Ours w/o Mixing

Figure 10. Extended ablation on importance of training on synthetic and real data. Results of “Ours” correspond to columns 2-4,

while “w/o Mixing” to 5-7.
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Figure 11. Extended qualitative comparison using real-world multi-view scenes [8] with Gaussian Haircut (GH) [12]. We compared

in a scenario with 1, 3, 8, and 32 views available. Note, GH fails in scenarios with 1 and 3 views. Digital zoom-in is recommended.



Image Ours Hairstep

Figure 12. Extended qualitative comparison of our method (columns 2–4) with Hairstep [13] (last three columns) on wavy samples.

Our method can reconstruct curlier structures with more realistic back geometry.



Image Ours Hairstep

Figure 13. Extended qualitative comparison of our method (columns 2–4) with Hairstep [13] (last three columns) on out-of-

distribution samples.



Figure 14. More results of our method on out-of-distribution data.



Figure 15. More results of our method on out-of-distribution data.



Figure 16. Additional results of our model.



Figure 17. Additional results of our model.



Figure 18. Additional results of our model.



Image Ours Hairstep NeuralHDHair Ours Hairstep NeuralHDHair

Figure 19. Extended qualitative comparison with Hairstep [13] and NeuralHDHair [11]. Note that in NeuralHDHair the number of

rendered strands is twice as compared to our method and Hairstep.
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Figure 20. Extended qualitative comparison with Hairstep [13] and NeuralHDHair [11].
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