Calibrating MLLM-as-a-judge via Multimodal Bayesian Prompt Ensembles Supplementary Material

A. Additional Experimental Details

	Factor	Levels/Value	Notes				
Exps.	prompts samples clusters	5, 10, 20 5, 10, 20, 50 4, 8, 16, 32, 64	Num. prompts in \boldsymbol{a} Num. samples in \mathcal{D}_{val} Num. clusters K				
Seeds	train data cluster	3 Unique 50 Unique 5 Unique	Seed for training Seed for sampling \mathcal{D}_{val} Seed for sampling \mathcal{D}_{sup}				
Clustering	method samples init niter	Spherical $256 \times K$ 3 1,000	KMeans version Num. clustering samples Num. random inits Num. training iterations				
Optimization	Optim lr history max iter search	L-BFGS 0.01 50 100 strong wolfe	Optimizer Learning rate History size Max iterations Search func				
ϕ_I	Model Weights	CLIP-ViT-B16 laion2b_s34b_b88k	[52]				

Table 5. Summary of experimental configurations..

See table Tab. 5 for details on experimental factors, clustering configuration, and other hyperparameters.

B. Generating Instruction Prompts

We employ a variety of methods to contruct our prompt set *a*. We both manually, and with the aid of GPT, construct lists of personas, prompt templates, and task instruction criteria. We also take these original templates and create "*augmented*" versions by flipping the order of inputs in the template and changing the response glyph (*e.g.* "*A*)" *vs.* "*1.*"). We provide a sample prompt for reference —

```
You are a technical expert at

→ evaluating 'text-to-image'

→ alignment and aesthetics. Your task

→ is to assess the quality of two

→ images generated from the same

→ prompt. The criteria for evaluation

→ are as follows:

Image Quality - The image should have a
```

→ well-balanced composition with

→ effective brightness and contrast

→ in lighting, appealing color

→ harmony and saturation, sharp focus

 \hookrightarrow with visible fine details and

 \rightarrow minimal digital noise, and be high

 \hookrightarrow resolution without pixelation.

Image Artifacts - The image should not

→ have any obvious artifacts

→ including excessive blur,

→ occlusion, warping, or other

issues.

Be objective in your evaluation, do not

→ consider attributes like age, race,

→ gender, or other demographic

→ information. Respond with a single

 \rightarrow letter only.

[IMAGE 1]

Caption: [INPUT PROMPT]

Which of the two images do you prefer?

A) I prefer the first image.

B) I prefer the second image.

C. Derivation of Multimodal Mixture-of-Bayesian Prompt Ensembles

$$\begin{split} \log p(y|x) &= & \log \sum_{z} \sum_{a} p(y,a,z|x) \\ &= & \log \sum_{z} \sum_{a} p(y|x,a) p(a|z) p(z|x) \\ &= & \log \sum_{z} \sum_{a} p(y|x,a) p(a|z) p(z|x) * \frac{q(a|z)}{q(a|z)} \\ &= & \log E_{a \sim q(a|z), z \sim p(z|x)} \left[p(y|x,a) \frac{p(a|z)}{q(a|z)} \right] \\ &\geq & E_{a \sim q(a|z), z \sim p(z|x)} \left[\log p(y|x,a) + \log \frac{p(a|z)}{q(a|z)} \right] \\ &= & E_{a \sim q(a|z), z \sim p(z|x)} \left[\log p(y|x,a) \right] - E_{a \sim q(a|z), z \sim p(z|x)} \left[\log \frac{q(a|z)}{p(a|z)} \right] \\ &= & \left[\sum_{z} p(z|x) \sum_{a} q(a|z) \log p(y|x,a) \right] - \left[\sum_{z} p(z|x) KL(q(a|z)||p(a|z)) \right] \\ &= & \sum_{z} p(z|x) \left[\left[\sum_{a} q(a|z) \log p(y|x,a) \right] - KL\left(q(a|z)||p(a|z)\right) \right] \end{split}$$

Assuming uniform priors for p(a|z) and parameterizing $q(a|z) = w_{za}$, we can write the training objective for Multimodal Mixture-of-Bayesian Prompt Ensembles to maximize this lower-bound on the log-likelihood of all M datapoints in \mathcal{D}_{val} as:

$$\arg\max_{\mathbf{w}} \sum_{j=1}^{M} \sum_{z} p(z|x_{j}) \left[\sum_{a} w_{za} \log p(y_{j}^{*}|x_{j}, a) - \sum_{a} w_{za} \log w_{za} \right]$$
(11)

D. Additional Experiment Configurations

Profitate	Expected Calibration Error (\downarrow) 4 8 16 32 64					Max Calibration Error (↓)				AUC Precision-Recall (†)						
	Sality	4	8	16	32	64	4	8	16	32	64	4	8	16	32	64
5	5	.113	.113	.113	.113	.113	.245	.244	.245	.245	.246	.834	.835	.835	.835	.836
	10	.107	.107	.108	.108	.108	.239	.239	.239	.239	.239	.837	.837	.838	.838	.838
	20	.108	.108	.108	.108	.109	.241	.240	.241	.241	.242	.837	.837	.838	.838	.838
	50	.107	.107	.107	.107	.107	.235	.235	.236	.236	.237	.839	.839	.839	.839	.839
10	5	.092	.092	.093	.092	.093	.199	.200	.201	.201	.202	.842	.842	.843	.844	.844
	10	.094	.094	.095	.095	.095	.194	.195	.196	.196	.197	.843	.843	.844	.844	.845
	20	.090	.090	.091	.091	.091	.188	.188	.189	.189	.189	.844	.844	.845	.845	.845
	50	.088	.088	.088	.088	.089	.187	.187	.188	.188	.188	.845	.845	.845	.845	.845
20	5	.078	.079	.080	.080	.080	.170	.172	.172	.172	.173	.845	.846	.847	.847	.848
	10	.081	.081	.082	.082	.082	.168	.169	.169	.169	.169	.846	.847	.847	.848	.848
	20	.080	.080	.080	.080	.081	.159	.159	.159	.160	.161	.847	.847	.848	.848	.848
	50	.076	.076	.076	.076	.077	.153	.153	.153	.154	.154	.848	.848	.849	.849	.849

Table 6. Expected calibration error. Lower is better. Multiple cluster sizes. FDR controlled with Benjamini-Yekutieli [5]. HPSv2.

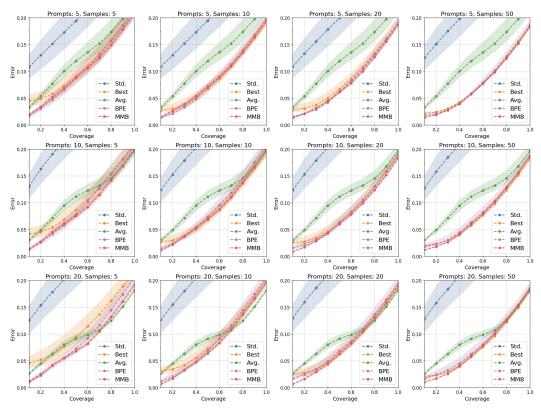


Figure 5. Error-coverage curves for different models. HPSv2.

E. Additional Qualitative Examples

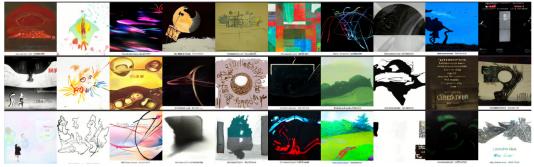
(a) A non-cohesive cluster that results in near-average weights across prompts due to low-validation sample match.

(b) A cohesive cluster which can be matched with validation samples, but does not have any highly weighted prompts.

(c) "You are a **photographer** skilled in assessing lighting, focus, and overall image sharpness [...]"

(d) "You are a landscape artist skilled in assessing lighting, color, and composition [...]"

Figure 6. Image clusters and their corresponding highest weighted prompts (or lack thereof) when using K=64, N=200.



(a) A non-cohesive cluster that results in near-average weights across prompts due to low-validation sample match.

(b) "You are a graphic designer with experience in visual clarity and technical image quality [...]"

(c) "You are an ${\it art\ historian}$ with a keen eye for visual composition and color balance [...]"

(d) "You are an AI ethics specialist focusing on ensuring accurate and unbiased image representations [...]"

Figure 7. Image clusters and their corresponding highest weighted prompts (or lack thereof) when using K=64, N=200.

F. MJBench Synthetic Preference Examples

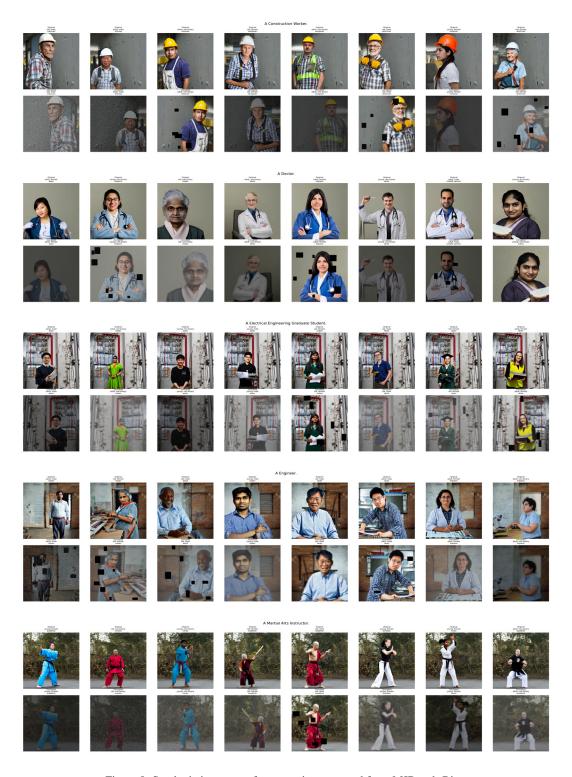


Figure 8. Synthetic images preference pairs generated from MJBench-Bias.