001

011

012

013

014 015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

## **Supplementary Materials**

## A. Proof of proposition 1

$$\begin{array}{ll} \mathbf{002} & \alpha_{p,q} = \mathbb{E}_{q(x)} \left[ \min \left( 1, \frac{p(x)}{q(x)} \right) \right] \\ \mathbf{003} & = \sum_{x} q(x) \min \left( 1, \frac{p(x)}{q(x)} \right) \\ \mathbf{004} & = \sum_{x} \left\{ \begin{aligned} p(x), & \text{if } p(x) < q(x) \\ q(x), & \text{otherwise} \end{aligned} \right. \\ \mathbf{005} & = \sum_{x} \min(p(x), q(x)) \\ \mathbf{006} & = \sum_{x} \frac{p(x) + q(x) - |p(x) - q(x)|}{2} \\ \mathbf{007} & = \frac{1}{2} \left( \sum_{x} p(x) + \sum_{x} q(x) - \sum_{x} |p(x) - q(x)| \right) \\ \mathbf{008} & = \frac{1}{2} \left( 1 + 1 - \sum_{x} |p(x) - q(x)| \right) \\ \mathbf{009} & = 1 - \frac{1}{2} \sum_{x} |p(x) - q(x)| \\ \mathbf{010} & = 1 - TV(p, q) \end{aligned}$$

## B. Full algorithm of GSD

In this section, we provide detailed pseudocode for the implementation of GSD in Algorithm 1 and 2. Since GSD is built upon SJD, it operates by simply replacing the VERIFY(·) part with our VERIFY\_GSD(·). For a more detailed implementation, please refer to the attached code.

#### **Algorithm 1** Grouped Speculative Decoding

**Require:** Speculative Length L, maximum seq length N, expert model  $p_{\theta}$ , initial context  $X_{0:n_0}$ , Group size G, Embedding distance matrix  $M_d$ , thresholds  $d, \delta$ 

```
1: k \leftarrow L, n \leftarrow n_0
 2: while n < N do
            q_{L-k:L}, X_{L-k:L} \sim \text{Rand-init}(\cdot)
            parallel for j = 0 to L
                                                                  ⊳ Parallel Verify
 4:
               p_i \leftarrow p_\theta(\cdot \mid [X_{0:n}, \hat{X}_{0:i}])
 5:
           end for
 6:
           (\hat{X}_{0:k}, k) \leftarrow \text{VERIFY\_GSD}(\hat{X}_{0:L}, p_{0:L}, q_{0:L}, G)
 7:
            X_{n:n+k-1} \leftarrow \hat{X}_{0:k}
 8:
           q_{0:L-k} \leftarrow p_{k:L}, \hat{X}_{0:L-k} \leftarrow \hat{X}_{k:L} \quad \triangleright \text{ Draft update}
 9:
            n \leftarrow n + k
10:
11: end while
12: return X
```

# Algorithm 2 VERIFY\_GSD(X,p,q,G)

```
Require: Draft \hat{X}_{0:L}, Verifier : p_{0:L}(\cdot), Drafter : q_{0:L}(\cdot),
      Group size G, Embedding distance matrix M_d, thresh-
      olds d, \delta
  1: for k = 0 to L do
           p\_sort_{vals}, p\_sort_{idx} \leftarrow sort(p_k)
  2:
            idx \leftarrow \text{find-idx}(p\_sort_{vals}, p_k(\hat{X}_k))
  3:
  4:
            C_{idxs} \leftarrow p\_sort_{idx}[idx - G//2:idx + G//2]
  5:
            Cvals \leftarrow p_k[C_{idrs}]
  6:
  7:
           for cv, ci in [Cvals, C_{idxs}] do
  8:
                 if |cv - p_k(\hat{X}_k)| > \delta then C_{idxs}.\mathsf{pop}(ci)
  9:
                 if M_d[\hat{X}_k, ci] > d then C_{idxs}.pop(ci)
10:
11:
            end for
12:
           \begin{array}{l} p_C' \leftarrow \text{sum}(p_k[C_{idxs}]) \\ q_C' \leftarrow \text{sum}(q_k[C_{idxs}]) \end{array}
13:
14:
           if not r \sim \mathcal{U}[0,1] \leq \min\left(1, \frac{p_C'}{q_C'}\right) then
15:
                 x \sim [p_k - q_k]_+, \hat{X}_k \leftarrow x, break.
16:
            end if
17:
18: end for
19: return X_{0:k}, k
```

## C. Additional Results

In this section, we present additional experiments expanding upon the visualizations discussed in the main text.

**Top-1 probabilities** In Fig. 1, we illustrate the visualization of Top-1 probabilities across a wider variety of images. As shown, regardless of the prompts, many images exhibit numerous tokens with low Top-1 probability distributions.

**Visual quality comparison** In Fig. 3, we visually illustrate the differences in generation quality among various methods compared in Table 1. As shown in the figure, our GSD achieves approximately a 4× speed-up while maintaining generation quality comparable to lossless methods such as vanilla AR and SJD. In contrast, the naive lossy method also achieves acceleration but significantly degrades generation quality.

**GSD generation performance** Fig. 2 presents further qualitative results of our method when accelerated by an average factor of 3.6. As demonstrated in the figure, our GSD significantly accelerates AR image decoding while maintaining generation quality across diverse prompts.

037 038

039

040

041

042

043

044

045 046

047 048

049 050

# D. Prompts on Qualititave Experiment

In Figure. 9 on main paper, the prompts for each images are as follows:

- Rusty robot on a skateboard in the hallway of domitory, photography, 4k, realistic, detailed, bright
- Origami astronaut, waliking in the cloud, bright background, realistic, 4k, photography, bright color
- photography, realistic, White cute fluffy dog, skyblue background, very intricate, very detailed, realistic., bright
- color photo, photography, Face of a young man, very detailed, realistic. sharp, film grain, high contrast
- animation art work, cute, cat character, bright color pallette



Figure 1. Additional p(x) visualization.



Figure 2. Qualtitiave experiment on various prompt. Our GSD shows on average 3.6x NFE acceleration while maintaing image quality



Figure 3. Qualitative comparison between methods in Table 1 of the main paper