Residual ViT for Efficient Temporally Dense Video Encoding

Supplementary Material

We provide the following additional information:

1.

Token Dropping Strategies: We present the different
token dropping strategies that can be adopted in the to-
ken reduction module in Section 1.

Motion-based Token-dropping Strategy: Insights into
the motion-based token-dropping strategy are provided
in Section 2, explaining the additional RAM require-
ments and the pre-processing of raw motion vectors.
Zero-shot Grounding Algorithm: A thorough explana-
tion of the implementation details of the zero-shot tem-
poral grounding algorithm is presented in Section 3.
Additional Comparison for Short-Form NLTVG:
Additional analysis for the task of natural language
temporal video grounding on the Charades-STA and
ActivityNet-Caption datasets are available in Section 4.

. Feature Comparison under Full Supervision Setup:

As an additional test of the quality of our Residual ViT
features, we investigate the accuracy of CG-DETR [34]
when replacing the original CLIP features with our
Residual ViT ones in Section 5.

Additional Comparison for Long-Form NLTVG: Ad-
ditional analysis for the task of natural language tempo-
ral video grounding on the MAD dataset is available in
Section 6.

Additional Comparison for AD: Additional results for
the task of automatic audio descriptions on the MAD
dataset are available in Section 7.

Additional Comparison for TAL: Additional results
for the task of temporal action localization on the
ActivityNet-v1.3 dataset are available in Section 8.
Supplementary Ablations: In Section 9, we conduct
additional ablations for ResidualViT on the Charades-
STA dataset, exploring different token reductions strate-
gies as presented in Section | and discussing the role
of token-dropping probability. Additionally, we inves-
tigate two distinct strategies for computational savings:
token merging and reduction of the spatial resolution of
the input frames. We ablated the design of the distilla-
tion approach and showcased how different distillation
objectives can achieve competitive accuracy. Moreover,
we ablate the interleave factor during distillation train-
ing. Finally, we report two additional ablations on the
MAD dataset, investigating the main components and
the interleave factor N.

10. Video Encoding Latency: Section 10 empirically val-
idates the wall-clock timings of ResidualViT, demon-
strating significant time savings compared to a standard
ViT model, despite requiring two forward passes.

11. Additional task - Action Recognition: In this supple-
mentary experiment, we test the accuracy of CLIP fea-
tures against Residual ViT features on the task of action
recognition on the Kinetics 400 dataset. Results are re-
ported in Section 1 1.

12. Limitations and Discussion: In Section 12 we discuss
the inherent limitations of our solution.

13. Qualitative Results: We conclude with a showcase of
several qualitative results in Section 13, highlighting the
practical effectiveness of our approach.

1. Token Dropping Strategies

In Section 3.1 we introduced the Residual ViT architecture,
which consists of the token reduction module (R), the resid-
ual tokenizer (A), and the transformer encoder (£y). Here,
we explore four practical implementations of the token re-
duction module when adopting the token dropping strat-
egy [0, 13, 16, 31].

For a given frame x;, which is transformed into a set of
tokens 7, each strategy retains (1—p) x |7 | tokens, where p
is the token reduction probability. Figure | visually depicts
the four token reduction approaches we investigate. (i) The
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Figure 1. Token reduction strategies. We implement three
data-independent token reduction strategies (a-c) and one data-
dependent one (d).



random strategy randomly samples tokens from the set.
Conversely, (ii) the uniform strategy selects tokens from
patches that are evenly distributed across the 2D grid of im-
age patches, ensuring that the selected patches are spaced
at regular intervals throughout the frame. (iii) The center
strategy is designed to retain tokens of patches from the cen-
ter of the frame. This strategy takes into consideration that,
when shooting a video, we tend to center the frame around
the subject or action being recorded. Finally, we design a
data-dependent (iv) motion strategy. This strategy further
exploits the characteristics of video data, which describes
how characters, objects, and scenes evolve in time. We ar-
gue that motion is a valuable source of information readily
accessible from encoded video files, providing information
on which parts of the frame at time step ¢ + & differ from
the frame at time step ¢t. Consequently, we discard tokens
representing patches with minimal motion, assuming their
change relative to previous frames is negligible, and their
information can be recovered through the residual token.
Notably, by prioritizing tokens associated with regions of
higher motion, ResidualViT is well-suited to handle fast-
moving content. See Section 2 for additional details about
motion preprocessing and memory overhead.

2. Implementation Details for Motion-Based
Token Reduction Strategy

Motion is a valuable and readily available source of infor-
mation for determining which spatial regions of a frame
have changed with respect to the previous one. To har-
ness this information, our method employs a compressed
video reader [1] that extracts motion vectors directly from
compressed video streams. Nevertheless, it is important to
acknowledge that motion vectors extracted from raw video
data typically exhibit a moderate level of noise, attributable
to the inherent sparsity and optimization mechanisms of
standard video compression techniques. To counteract this
effect and derive a more reliable motion estimation, we
compute the average motion across a short temporal win-

dow surrounding a target frame z;. Specifically, we con-
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each vector m; € R¥ XW'*C" corresponds to the motion
information of frame ¢. Here, H' = H/4 and W' = W/4
are the reduced height and width dimensions, respectively,
and C' = 4 signifies the channels in the motion vector,
capturing the (Ax, Ay) displacement of pixels with respect
to adjacent frames (previous and following ones). The pa-
rameter Wj; denotes the size of the temporal window over
which the motion is aggregated. As we are interested in the
magnitude of the motion and not its direction, we compute
the average L; norm along dimension C’ in the window
Wir. Note that, at the start of the video (¢t < Wj,) and at
the end (¢t > T — Wy, where T is the timestamp of the
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Figure 2. Optimal W), hyperparameter value. The plot
shows the average percentage of zero-valued motion vectors on
the Charades-STA dataset as the aggregation window size Wi
varies. The trend flattens beyond Wj; = 11, indicating dimin-
ishing returns. Therefore, we choose Wjs = 11 as our default
parameter.

last frame), the window is reduced so that only the avail-
able motion vectors are aggregated, avoiding the need for
padding.

We then upsample the computed motion magnitudes to
the frame resolution (H, W) and select the 1 — p frame
tokens with the highest motion magnitudes at their patch’s
spatial location.

In our implementation, we set the motion window size
W = 11. This setting implies that we incur an additional
RAM memory consumption that is proportional to the cost
of storing a frame in memory. We can estimate the memory
cost as follows. The memory consumption of a frame can
be expressed as Mp=H xW x3, while for motion vectors
Mpy=(H/4)x (W /4)x4x M, resulting in a total mem-
ory cost Mg + My, /Mp = ~1.9x. Note that this mem-
ory overhead does not affect GPU memory availability as
the motion vectors are not required to be moved to such a
device for processing. To determine the value of Wy, we
measure the average percentage of zero-value motion vec-
tors in the Charades-STA dataset. As shown in Figure 2,
we find that for W); = 1, roughly 50% of motion vectors
are zero while considering W, = 11 reduces this value to
less than 15%. We do not observe a significant reduction
beyond W), = 11. For simplicity, we keep this parameter
constant across datasets.

Finally, note that we utilize motion information to iden-
tify frame patches that have likely undergone significant
transformations relative to preceding frames. This strategy
enables us to provide the transformer encoder of Residu-
alViT (Es) with patches expected to exhibit less redundancy
with previous frames. Importantly, this approach does not
supply the encoder with motion information, meaning the
network remains unaware of explicit motion patterns.



3. Zero-shot Grounding Algorithm

The task of natural language video grounding involves tem-
porally localizing a natural language description within a
single video. Given the fine-grained temporal localization
requirements of the task, dense frame sampling and encod-
ing are indispensable, making it an ideal testbed for our ef-
ficient ResidualViT approach. This section details feature
encoding and describes the motivations for addressing the
task in a zero-shot setting.

We argue that the zero-shot setting holds valuable prop-
erties. Firstly, algorithms evaluated in a zero-shot man-
ner are not prone to be affected by the inherent biases of
the downstream datasets, which have shown to be a dan-
ger for this task [38, 45, 56]. Additionally, models exhibit-
ing strong zero-shot capabilities typically demonstrate en-
hanced generalization to unseen datasets, thereby increas-
ing their versatility and utility. Secondly, from a practi-
cal standpoint, relying on multiple specialized models for
each new dataset can severely limit the scalability and ver-
satility of systems. In contrast, a unified model that excels
in zero-shot settings streamlines system architecture and
boosts scalability and adaptability. Such models simplify
the maintenance and deployment of deep learning applica-
tions and readily adjust to new challenges without the need
for extensive retraining. Third, the zero-shot approach pro-
motes environmental sustainability. This approach signifi-
cantly curtails the computational demands by drastically re-
ducing the necessity for ongoing retraining on possibly ex-
tensive datasets, thus lowering energy consumption and the
associated carbon footprint. Employing large pre-trained
models in a zero-shot manner optimizes their efficacy while
minimizing further environmental impacts. We strive to
pursue zero-shot evaluation in this work for all these rea-
sons.

Visual Encoding. Our algorithm begins with encoding a
set of video frames X' = {z,};*, through a designated vi-
sual encoder (either a standard ViT or our ResidualViT).
This process generates a series of frame features {f;};;.
When employing Residual ViT, in line with the approach il-
lustrated in Figure 2a, we utilize a sliding window mecha-
nism that concurrently processes /N + 1 frames. The first
frame in each window is encoded by the foundation model
encoder &y, with the resulting features stored for subse-
quent use. The following N frames are processed by en-
coder £s (Figure 2b), which takes as input the frame tokens
and the cached feature of the first frame of the window. The
residual feature is first transformed into the residual token
via the residual tokenizer. Subsequently, in the reduction
module, frame tokens are reduced according to a particular
strategy and token reduction probability p. Finally, these
sparse visual tokens are concatenated with the residual to-
ken and forwarded to the visual encoder &y, .

Language Encoding. The language encoder is kept frozen

throughout our experiments and initialized with CLIP
weights corresponding to the specific version of the visual
encoder (ViT-B/32, ViT-B/16, or ViT-L/14). To solve the
task, each sentence s is first tokenized and then processed
through the language encoder to derive a single sentence
feature g;.

Grounding Algorithm. For the grounding task, cosine
similarity between each frame embedding and the sentence
embedding is calculated, creating a temporal sequence of
similarity scores {S;};";. We post-process the similarity
profiles with a moving average smoothing operation with
window size Wiy 4.

Finally, inspired by methods in prior work such as [7,
24], we implement a watershed algorithm [42] for moment
prediction. In this step, group consecutive timesteps where
the similarity scores exceed a given threshold, effectively
delineating temporally contiguous segments. The start and
end timesteps of these segments constitute our moment pre-
dictions. Multiple predictions are sorted based on the high-
est frame-sentence similarity in their span.

For short-video datasets, such as Charades-STA and
ActivityNet-Captions, we compute the threshold as a scaled
average of the scores, given by T% Yore, Sy, where «vis a
scaling factor. Conversely, for the long-form MAD dataset,
we normalize the scores to the range [0, 1] and apply a fixed
threshold 3, an approach that mitigates the influence of low-
relevance similarities in longer sequences that can other-
wise skew the average similarity score. Section 13 presents
several qualitative results showcasing the aforementioned
similarity profile.

4. Additional Short-Form NLTVG Compar-
isons

For completeness, Table | provides a summary comparing
state-of-the-art grounding methods, categorized into fully
supervised [2, 8, 27, 30, 36, 44, 53, 54, 57], weakly super-
vised [5, 19, 58], pseudo-supervised [7, 10, 15, 22, 37, 50,
59], and zero-shot techniques [29, 33] within the context of
short video setups.

In fully supervised settings, models are trained using
video data, corresponding sentences, and temporal bound-
aries. In contrast, weakly supervised approaches elimi-
nate the need for temporal annotations. Our work is more
closely aligned with settings where textual or temporal la-
bels are unavailable. In these scenarios, prior approaches
have leveraged off-the-shelf concept detectors (e.g., for ob-
jects, actions, and scenes) [10, 37, 50], which are used to
automatically generate pseudo-annotations (sentences and
temporal boundaries) for downstream tasks. These pseudo-
annotations are then used to train grounding models. Other
sources of pseudo-supervision include pretrained visual-
language embeddings [22], commonsense knowledge [15,
46], and captioning methods [59]. Furthermore, methods



Use Charades-STA Avg. Cost ActivityNet-Captions Avg. Cost
Supervision Downstream R@1 1 Feature/sec | R@1 1 Feature/sec |
Task Data | IoU=0.5 1IoU=0.7 (GFLOPs) | IoU=0.5 IoU=0.7 (GFLOPs)
2D-TAN [57] Full v 39.8 23.3 74.2 14.0 27.4 19.3
CPNet [27] Full v 60.3 38.7 638.3 10.6 21.6 38.5
CRaNet [47] Full v 60.9 41.3 296.8 47.3 30.3 19.3
WSTG [5] Weak v 27.3 12.9 38.5 23.6 — 38.5
CRM [19] Weak v 34.8 16.4 638.3 32.2 — 23.2
CPL [58] Weak v 49.2 224 145.2 314 — 115.5
U-VMR [10] Pseudo v 20.1 8.3 289.5 26.4 11.6 962.5
PSVL [37] Pseudo v 31.3 14.2 638.1 30.1 14.7 38.5
PZVMR [50] Pseudo v 33.2 18.5 638.1 31.3 17.8 38.5
CORONET [15] Pseudo v 34.6 17.9 638.1 28.2 12.8 38.5
LFVL [22] Pseudo v 37.2 19.3 638.1 32.6 154 38.5
SPL [59] Pseudo v 40.7 19.6 166.5 27.2 15.0 83.3
UniVTG [29] Zero-Shot X 25.2 10.0 70.0 - — —
MR-FVLM [33] Zero-Shot X 42.9 20.1 1370.0 27.9 11.6 370.0
CLIP (B/32) Zero-Shot X 35.9 18.7 13.2 27.8 13.9 4.4
Residual ViT (B/32) | Zero-Shot X 34.2 17.7 6.1(_53%) 27.3 13.7 2.0(—53%)
CLIP (B/16) Zero-Shot X 37.7 21.2 50.7 28.1 13.8 16.9
Residual ViT (B/16) | Zero-Shot X 37.8 21.0 22.4(_56%) 27.5 13.8 7.5(-56%)
CLIP (L/14) Zero-Shot X 42.9 24.1 233.4 29.1 13.8 77.8
Residual ViT (L/14) | Zero-Shot X 41.5 23.8 102.6(—56%) 28.3 13.5 34.2(_56%)

Table 1. Short video state-of-the-art comparison. We compare our approach against state-of-the-art methods using different levels of
supervision. Our Residual ViT reduces the cost of frame encoding by 56% while closely retaining the performance of the CLIP model. The
best method in each block of directly comparable methods is bolded, and the second-best method is underlined.

employing complex proposal schemes, such as feature clus-
tering [15, 22, 37] or sliding windows [50], are often paired
with strategies for supervised feature refinement. Although
these methods do not rely on manually annotated labels,
they still adapt model parameters using the training dataset
for the target downstream task, which is why we categorize
them as pseudo-supervised.

In contrast, our zero-shot approach (described in Sec-
tion 3) can be directly compared to zero-shot methods such
as UniVTG [29] and MR-FVLM [33], all of which avoid
training on task-specific datasets.

For each method in Table 1, we report the ground-
ing accuracy on the Charades-STA [11] and ActivityNet-
Captions [23] datasets, alongside the average embedding
cost per second. Previous methods have used visual back-
bones such as ResNet152, C3D, BLIP, VGG-19, and 13D [4,
14, 26, 43, 49], with respective costs of 11.6, 38.5, 55.5,
143.7, and 148.4 GFLOPs per feature.

Table 1 also reports the grounding accuracy using the
vanilla CLIP and our Residual ViT features across different
backbones. For Residual ViT, we employ motion-based to-
ken reduction with a probability of p = 85% and set the in-
terleave parameter to N = 2. For the grounding algorithm,
we set Wiy 4=15 and av=1.0 for Charades-STA, Wi 4=15

and a=0.95 for ActivityNet-Captions.

As highlighted in the main paper, our ResidualViT
closely matches CLIP’s grounding accuracy while reducing
frame encoding costs by approximately 56% across all ViT
backbones. Despite not being trained on the downstream
task data, our method still achieves competitive accuracy
when compared to prior approaches that train on both
datasets. Specifically, for the Charades-STA dataset, our ap-
proach offers the best cost vs. accuracy trade-off among all
pseudo-supervised methods. For the ActivityNet-Captions
dataset, our method with the B/16 backbone matches or sur-
passes the accuracy of three pseudo-supervised methods,
while maintaining a lower computational cost.

5. Feature Comparison under Full Supervision
Setup

In this section, we focus on a representative fully supervised
baseline for Natural Language Temporal Video Ground-
ing to evaluate the accuracy gap between CLIP and Resid-
ualViT features. For this experiment, we selected CG-
DETR [34], a recent and well-performing publicly avail-
able baseline that natively utilizes CLIP features for the
Charades-STA dataset. The results of our experiments are



Charades-STA Avg. Cost
Features R@1 1 mloU 1 Feature/sec |

IoU=0.3 IoU=0.5 IoU=0.7 (GFLOPs)
CG-DETR CLIP (B/32) 63.6 49.7 26.8 43.8 4.4

CG-DETR Residual ViT (B/32) 62.2 48.2 26.4 42.5 2.0(—53%)
CG-DETR CLIP (B/32) + SlowFast 69.6 57.1 34.5 49.0 40.5
CG-DETR | ResidualViT (B/32) + SlowFast 69.2 56.5 34.0 48.7 38.1
CG-DETR* CLIP (B/32) + SlowFast ‘ 70.4 58.4 36.3 50.1 40.5

Table 2. Frame feature comparisons in full supervision setup. This table compares the performance of the baseline CG-DETR [34]
on the Charades-STA dataset under two setups: (i) using either CLIP (B/32) or Residual ViT (B/32) alone, and (ii) combining SlowFast
features with either CLIP (B/32) (as in the original manuscript [34]) or Residual ViT (B/32). Our Residual ViT achieves a 53% reduction in
frame encoding cost while closely maintaining the accuracy of the original setup. We denote with the symbol * the accuracy as presented
in the original paper (last row). Note that all other rows have been trained from scratch using the original codebase.

presented in Table 2, and we maintained all hyperparam-
eters as defined by the official implementation. Notably,
features were extracted at a rate of one frame per second.
For all rows except the last one, we train CG-DETR from
scratch. The last row reports the accuracy as presented in
the original paper. We find that we cannot fully reproduce
those results using the default settings.

We begin by comparing the accuracy when using only
CLIP features versus ResidualViT features, as shown in
the first two rows of the table. For ResidualViT, we set
N=2 and p=85%. Residual ViT achieves a reduction in en-
coding cost of approximately 53% while maintaining accu-
racy close to the CLIP features. Specifically, we observe
a marginal drop of 1.4% (relative 2.2%) for R@1-1oU=0.3,
an absolute drop of 1.5% (relative 3.0%) for R@ 1-IoU=0.5,
and an absolute drop of 0.4% (relative 1.5%) for R@1-
IoU=0.7. These results indicate that, with an average rela-
tive accuracy drop of only 2.2%, we can achieve more than
a 50% reduction in encoding cost.

Additionally, we evaluated the accuracy of CG-DETR in
its original configuration, where CLIP features are channel-
wise combined with SlowFast [9] features. This setup sig-
nificantly increases computational cost, as SlowFast fea-
tures alone are estimated at 36.1 GFLOPs per feature.
While the addition of SlowFast features can boost average
accuracy on average of approximately 7.0%, it comes with
a 9.2x increase in computational cost, representing an un-
favorable trade-off. Nonetheless, when SlowFast features
are combined with Residual ViT features, the computational
cost is reduced by approximately 6%, with only a 0.5%
absolute drop (relative 1%) in average accuracy, providing
once again a favorable balance between accuracy and cost
reduction.

6. Additional Long-Form NLTVG Compar-
isons

In this section, we present additional grounding results for
the long-form MAD dataset. Table 3 builds on Table 3 from
the main paper by incorporating results from supervised
state-of-the-art methods and zero-shot watershed accuracy
using CLIP features.

We begin by emphasizing that our zero-shot watershed-
based grounding algorithm, detailed in Section 3, signifi-
cantly outperforms the proposal-based method introduced
by [45]. By comparing rows 9 and 10 of the table, where
both algorithms utilize the same visual backbone (CLIP
ViT-B/32), we isolate and evaluate their individual contri-
butions. Our zero-shot watershed-based approach demon-
strates superior accuracy, with relative improvements rang-
ing from 43% to 128%. Remarkably, our zero-shot results
are comparable with, or even surpass, several fully super-
vised methods listed in rows 1 through 8.

Table 3 also enables a direct comparison of different
backbone features while keeping the grounding algorithm
fixed, thereby contrasting CLIP with our Residual ViT. For
Residual ViT, we utilize configurations of N = 2, p = 85%,
and a center token dropping strategy, resulting in an em-
bedding cost reduction of 53% to 56%. For the grounding
algorithm, we set Wj; 4=7 and 5=0.7.

When using the ViT-B/32 backbone (rows 10-11), Resid-
ualViT reduces computational costs by approximately 53%,
with an average accuracy degradation of just 0.1% com-
pared to CLIP weights, a negligible decrease. Similarly,
employing the ViT-B/16 backbone (rows 12-13) Residu-
alViT achieves a 56% reduction in computation with re-
spect to CLIP, accompanied by an average accuracy drop
of 0.5%. For the larger ViT-L/14 backbone, the average ac-
curacy drop is 1.5%, with the most significant decrease oc-
curring for the less stringent metric (R@1 IoU=0.1). We hy-
pothesize that the slightly larger accuracy drop observed on



Use MAD Avg. Cost
Grounding Algorithm [Downstream| Features Visual R@1 7 R@51 Feature/sec |
Task Data Backbone | IoU=0.1 IoU=0.3 IoU=0.5 ‘IoU:O.l IoU=0.3 ToU=0.5| (GFLOPs)
DenoiselLoc [53] v CLIP ViT-B/32 1.1 0.9 0.5 1.1 3.3 2.2 21.8
2D-TAN [57] v CLIP ViT-B/32 3.2 2.5 1.6 11.9 9.3 5.7 21.8
Moment-DETR [25] v CLIP ViT-B/32| 3.6 2.8 1.7 13.0 9.9 5.6 21.8
VLG-Net [44] v CLIP ViT-B/32 3.6 2.8 1.7 11.7 9.3 6.0 21.8
CONE [17] v CLIP ViT-B/32 8.9 6.9 1.1 20.5 16.1 9.6 21.8
SOONet [39] v CLIP ViT-B/32| 11.3 9.0 5.3 23.2 19.6 13.1 21.8
SnAG [35] v CLIP ViT-B/32 | 10.4 8.5 5.5 24.4 20.3 13.4 21.8
RGNet [12] v CLIP ViT-B/32| 124 9.5 5.6 25.1 18.7 10.9 21.8
Proposals [45] X CLIP ViT-B/32| 6.6 3.1 14 15.1 9.9 5.4 21.8
Watershed X CLIP ViT-B/32| 8.7 5.5 3.2 21.1 13.0 7.3 21.8
Watershed (ours) X ResidualViT ViT-B/32| 8.6 5.4 3.1 20.5 12.6 6.9 10.2(_53%)
Watershed X CLIP ViT-B/16| 10.8 6.8 3.9 24.5 15.2 8.5 84.3
Watershed (ours) X Residual ViT ViT-B/16| 10.1 6.4 3.7 23.5 14.6 8.1 37.3(~56%)
Watershed X CLIP ViT-L/14| 13.3 8.6 5.0 28.5 18.2 10.3 389.2
Watershed (ours) X ResidualViT ViT-L/14| 10.7 7.3 4.3 24.4 16.6 9.3 | 171.0(_56%)

Table 3. Long-form video state-of-the-art comparison. ResidualViT outperforms the previous art both in accuracy and computational
cost on the challenging long-form MAD dataset. In these experiments, Residual ViT was configured with N=2, a token dropping proba-

bility p=85%, and the center token dropping strategy.

the MAD dataset is due to frequent shot transitions (~1k per
movie), which disrupt the temporal correlations between
I- and P-frames, unlike Charades-STA, which contains no
such transitions. Nonetheless, these results demonstrate that
Residual ViT offers an excellent accuracy-to-cost reduction
trade-off across all ViT variants within the MAD dataset.

7. Additional Automatic Audio Description
Setting

This section presents further results on the task of Auto-
matic Audio Description. Unlike the results in the main pa-
per (Table 4 in Section 4), we include 64 contextual Audio
Descriptions as additional input to the GPT-2 model. Ta-
ble 4 details the accuracy of both CLIP and ResidualViT
features across various backbone sizes without audio con-
text.

In this setup, both the AudioAD baseline equipped with
CLIP or Residual ViT features exhibit comparable accuracy.
Notably, with the ViT-B/32 backbone, Residual ViT shows
an average accuracy drop of 2.2%. However, for the ViT-
B/16 and ViT-L/14 backbones, Residual ViT model outper-
forms CLIP by 1.6% and 1.9%, respectively, while being
56% more efficient.

This experiment further highlights the excellent accuracy
vs cost tradeoff achieved by Residual ViT with respect to the
CLIP model.

Avg. Cost
BertST R-LT C1 M7 St Feature/sec |
(GFLOPs)
CLIP (B/32) 23.8 13.0 17.7 57 5.0 21.8
Residual ViT (B/32) 23.9 128 170 55 4.9  10.2(_s39%)
CLIP (B/16) 25.0 129 175 54 51 84.3
Residual ViT (B/16) 24.3 132 180 58 5.0 37.3(_s6%)
CLIP (L/14) 24.5 13.0 170 56 4.8 389.2
Residual ViT (L/14) 24.2 132 169 59 5.0 171.0(_s6%)

Table 4. Automatic Audio Description. ResidualViT provides
nearly identical captioning quality to CLIP across all backbone
sizes and metrics at a cheaper encoding cost.

8. Additional TAL Comparisons

This section presents further results on the task of Tem-
poral Activity Localization. Table 5 complements the re-
sults presented in the main paper with comparisons against
additional backbones. The ActionFormer [55] baseline is
trained from scratch for all sets of features.

We find that all commonly used backbones (i.e., TSN,
TMS, SlowFast, VideoSwin, VideoMAE, and Intern-
Video2) impose a much higher computational cost for fea-
ture extraction. This is due to their temporal modeling de-
sign, which makes them particularly costly. Conversely,
frame-based encoders such as CLIP and ResidualViT are
not subjected to such high computational demands yet pro-
vide competitive accuracy for the task.

In particular, contrasting ResidualViT (L/14) against
TSM-R50 and TSN-R50, we observe that for equivalent



Avg. Cost

Backbone mAP 1 Feature/sec |

(%) (GFLOPs)
TSM-R50 [28] 34.51 123.3
TSN-R50 [51] 34.64 385.1
SlowFast-R101 [9] 35.95 247.9
VideoSwin-B [32] 35.60 675.0
VideoSwin-L [32] 35.91 2238.8
VideoMAE-H [48] 36.96 4470.0
InternVideo2-6B [52] | 38.95 5137.5
CLIP (B/32) 34.05 4.4
Residual ViT (B/32) 33.42 2.0(—53%)
CLIP (B/16) 34.40 16.9
Residual ViT (B/16) 33.76 7.5(256%)
CLIP (L/14) 34.83 77.8
Residual ViT (L/14) 34.46 34.2(_56%)

Table 5. Temporal Action Localization. ResidualViT provides
competitive accuracy at a fraction of the CLIP computational
cost. When comparing against additional backbones, Residu-
alViT provides a good cost vs. accuracy tradeoff with an orders-
of-magnitude cheaper model and comparable mAP.

mAP, Residual ViT is 3.6-11.2 x more efficient. This finding
showcases the excellent accuracy vs. cost tradeoff achieved
by Residual ViT.

9. Additional Ablations

In this section, we delve deeper into the design choices of
Residual ViT by performing ablation studies on its token
reduction mechanisms and distillation strategy. We begin
by testing several designs for token-dropping strategies as
presented in Section | and discussing the role of token-
dropping probability. Next, we explore an alternative ap-
proach to the token reduction module by replacing token-
dropping with a token merging strategy [3]. We then assess
the impact of reducing input frame resolution on the total
number of tokens, providing insights into its effectiveness
as a computational saving technique. Finally, we investi-
gate an alternative distillation objective that eliminates the
need for language annotations.

Note that, while semantically aware token reduction
strategies [6] could be incorporated, we leave this for future
work due to their additional computational demands (i.e.,
complex token relevance computation at each level of the
transformer encoder).

Token Reduction Module Ablation - Token Drop Strat-
egy. Here, we ablate the different token reduction strate-
gies presented in Section 1. In Table 6, we contrast the
grounding accuracy of the CLIP model (first row) against
our ResidualViT encoder. The lowest grounding accuracy
is achieved by the center token reduction strategy with rel-
ative drops (vs. the CLIP model, first row) in the range

Dro Charades-STA Avg. Cost Memory Cost

Stratep R@I1 1 per Feature | per Feature |

& | IoU=0.5 ToU=0.7 | (GFLOPs)  (normalized)
- - | 429 241 | 2334 Ix
5 | Random | 40.8 23.3 102.6 1x
& | Uniform | 39.6 22.5 102.6 1x
~ | Center 38.6 21.1 102.6 1x
Motion 41.5 23.8 102.6 1.9%x

Table 6. Token reduction strategy ablation for Residual ViT. We
ablate four different token reduction strategies on the Charades-
STA dataset. For all, we fix the token reduction probability to
85%. Memory cost is normalized according to the baseline mem-
ory footprint.

Dro Charades-STA Avg. Cost Memory Cost

Stratep R@I1 1 per Feature |  per Feature |

& | 1oU=0.5 IoU=0.7 | (GFLOPs)  (normalized)
I s 241 | 2334 1x
5 | Random | 20.8 9.5 102.6 1x
£ | Uniform | 21.0 10.6 102.6 1x
” | Center 25.8 13.2 102.6 1x

Motion 28.5 14.5 102.6 1.9x

Table 7. Token reduction strategy ablation for CLIP. We ab-
late four different token reduction strategies on the Charades-STA
dataset. For all, we fix the token reduction probability to 85%.
Memory cost is normalized according to the baseline memory
footprint.

of 10% — 12%. Uniform sampling produces slightly better
accuracy with relative drops in the range of 6% — 7%. The
second-best performing method is random, which decreases
the drop to 3% — 5%. Finally, the motion-based strategy
closely matches the grounding accuracy of the CLIP base-
line with a relative drop in the range of 1% — 3%. Given
the fixed token reduction probability, all settings result in a
cost reduction of 56% with respect to the naive CLIP frame
encoding baseline.

Additionally, in Table 7, we report the accuracy when
the different token reduction strategies are applied to the
CLIP model. In this case, we observe much wider differ-
ences between different token reduction strategies, where
random and uniform strategies perform the worst with a rel-
ative accuracy drop in the range of 50% — 60%. The center
token reduction strategy provides better accuracy, reducing
the losses to 40% — 45%, while motion provides the best
trade-off with a 3%4 — 40% drop.

It is important to observe that our model (Table 6) pro-
vides a certain level of resilience to the type of token re-
duction strategy compared to the baseline CLIP model (Ta-
ble 7). This finding suggests that for Residual ViT, token re-
duction strategies that avoid motion computation can serve
as viable alternatives, especially in scenarios with limited
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(b) Drop vs Merge ablation.

Figure 3. Token dropping vs merging. (a) We illustrate the relationship between the ViT layer index and the number of tokens resulting
from the token merging operation for several canonical merging factors (r). (b) We compare the cost (GFLOPs) vs performance (R@1-
IoU=0.5) for CLIP and Residual ViT. We present CLIP without any token reduction strategy (red), against our Residual ViT when the token

reduction is token dropping ( ) or token merging (
lower performance at a comparable cost reduction.
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Figure 4. Token drop probability ablation. We showcase the
performance of CLIP (black) and our Residual ViT ( ) when
progressively increasing the token drop probability.

memory or restricted computational resources. We attribute
this finding to the learnable temporal residual connection,
which enables the model to effectively compensate for the
discarded tokens.

Token reduction probability. Here, we assess how varying
the token reduction probability affects the accuracy of both
the baseline CLIP model and our ResidualViT model. As
depicted in Figure 4, the CLIP model (black) demonstrates
a degree of robustness to the dropped tokens, maintaining
relatively stable grounding accuracy until the token reduc-
tion probability reaches 35 — 40%. Beyond this setting, we
observe a gradual decline in accuracy, which becomes more
pronounced when the probability exceeds 80%. In contrast,
thanks to our model design, Residual ViT ( ) exhibits
a higher tolerance to dropped tokens, retaining relatively
high grounding accuracy up to p=85% of dropped tokens.
Token Reduction Module Ablation - Token Merging.
Our ResidualViT is agnostic to the implementation of the
token reduction method. Therefore, we ablate replacing the

). The ablation can conclude that token merging is less favourable due to

token dropping strategy [16, 31] with token merging [3],
which has shown promising results in reducing the infer-
ence time of pre-trained ViT models.

This solution opts for merging a fixed number of tokens
per layer, denoted by the r parameter. Within each trans-
former block, the set of frame tokens at layer [, denoted as
T, is divided into two subsets: T4, containing tokens at
odd indices, and 7., containing tokens at even indices.
A bipartite matching is computed over the two sets by cal-
culating the cosine similarity between the key embeddings
of tokens derived from the self-attention mechanism. The
r edges of the bipartite graph characterized by the highest
similarity define the assignment. The connected tokens are
then merged together via a weighted sum, where each token
weight represents how many tokens were previously aggre-
gated in it. Note that neither the [CLS] token nor the resid-
ual token is merged with the frame tokens. Following the
bipartite assignment, the maximum number of token merg-
ers per layer is limited to half of the total number of tokens
available at layer [ (min(|T"|/2,7)).

This token-reduction strategy has the potential to reduce
the information loss that affects the token dropping strategy,
as the content of the tokens is retained even if their number
is reduced. However, it presents other limitations. (i) Due to
the progressive nature of the merging operation (after each
transformer layer), to achieve a comparable cost reduction
to token dropping, the r parameter must be large. (ii)) When
the r factor is moderately large, the majority of the tokens
are merged together. This effect is showcased in Figure 3a,
where we see that for higher values of r, the number of to-
kens reduces to one quite early in the network (e.g., around
the depth of layer 8 for r = 45).

In Figure 3b, we conduct a comparative analysis of the
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(b) Token Drop vs. lower resolution input ablation.

Figure 5. Token drop vs lower resolution. (a) We illustrate the relationship between frame resolution and number of tokens as a function
of three canonical patch sizes. (b) We compare the cost (GFLOPs) vs performance (R@1-IoU=0.5) for CLIP and Residual ViT. We present

CLIP without any token reduction strategy (red), against our Residual ViT with token drop (

) or with lower input resolution (green).

For the lower resolution setting, we additionally explore using LoRa [18] adapters to finetune the input 2D convolution that implements

the patchyfication operation.

token dropping and token merging strategies. For both
strategies, we employ the ViT-B/16 backbone model. We
set p = 85% and used the motion-based strategy for to-
ken dropping. We set » = 40 for token merging. We re-
port R@1-IoU=0.5 grounding accuracy on Charades-STA.
We compare the CLIP baseline in red against Residual ViT
equipped with token dropping ( ) or token merging
( )-

Figure 3b shows token merging achieves overall lower

grounding accuracy and incurs a significantly higher com-
putation cost for its highest grounding accuracy setting
(~30 GFLOPs for token merging with N=1 versus ~17
GFLOPs for token dropping with N=3). Nonetheless, both
strategies are capable of effectively reducing the cost with
respect to the CLIP baseline (red). This result validates our
design choices for the token reduction module of our Resid-
ualViT.
Spatial Resolution Ablation. An alternative to directly
manipulating the number of frame tokens involves adjust-
ing the spatial resolution of input frames. This strategy
has proven effective in dual-branch architectures [9], where
one branch processes a few high-resolution frames, and the
other handles many low-resolution frames. In this section,
we compare our approach against this strategy.

In particular, we forward the full resolution I-frame to
the ViT encoder &), and N low-resolution P-frames to the
Residual ViT encoder £s. The number of tokens |7| for
an input frame with resolution (H, W) is calculated as
IT| = 2%, where P denotes the patch size. Conse-
quently, reducing the frame resolution directly decreases the
total number of tokens produced from the frame. We pro-
vide the relationship between frame resolution, patch size,
and number of tokens in Figure 5a, examining trends across
three canonical patch sizes: P € {14, 16, 32}.

Subsequently, in Figure 5b, we contrast the accuracy of
two variations of ResidualViT. One variant employs token
dropping ( ), while the other utilizes a reduced input
frame resolution (green), both using the ViT-B/16 backbone
model. For the token dropping variant, we set p = 85%,
and for reduced resolution, we adjust the spatial dimen-
sions to H = W = 96 pixels (as opposed to the default
H = W = 224). These modifications yield comparable
reductions in computational cost, as demonstrated by the
alignment of the data points along the x-axis. However, our
results indicate that reducing the input resolution is less ef-
fective than employing token dropping in terms of accuracy
(y-axis). Note that, in all experiments where the token re-
duction module is modified, we re-train the residual tok-
enizer to ensure consistent performance evaluation.

We hypothesize that reducing the input frame resolution
compromises the quality of the token representations in-
putted to the transformer. The process of converting image
frames into tokens is implemented through a 2D convolu-
tion where both the kernel size and stride are set to the patch
size. Previous research has indicated that although convo-
lutional kernels can generalize to different resolutions, sub-
stantial changes in resolution can negatively impact accu-
racy [20, 41]. In our experiments, to match the compu-
tational cost reductions observed with the token reduction
strategy, we decreased the resolution of inputs to the Resid-
ualViT encoder by a factor of four. To address the result-
ing resolution mismatch, we explored fine-tuning the 2D
convolutional layers using LoRa adapters [18]. This adjust-
ment helps account for the impact of lower-resolution inputs
on token representation quality. Our findings show that in-
corporating LoRa adapters with lower-resolution inputs im-
proves accuracy across all IV values and achieves accuracy
comparable to the token drop strategy for N = 3. How-



[ MSE Loss ]

ST SNOTTTTTTT V)T
i g Fitin '
| h !
! ViT &, :: ViT &y !
| ! |
| [ Tokenization ] (  Tokenization ] :: (__Tokenization ] |
! 1
! ¥ !
1 h :
: 5 4) a2« : : 2« 1
1 h '
. Tig Tk X Tk H

Student Visual Encoder

7\

Teacher Visual Encoder

(a) Distillation pipeline.

ViT-B/16
40 N=3 N=2 N=1
- N=5 (-63%) (-56%) (-42%)
~ (-70%) ° °
EN=10 /./N:1
‘2 36 {(77%) 97 N2 ()
T N=3 (56%)
-
(-63%)
L3y &
~ "I N=10  N=5 - -
@ (_77%) (_71%) Residual ViT (CE)
3 —e— Residual ViT (MSE)
e CLIP
30 T : : T : ; ; T -
10 15 20 25 30 35 40 45 50 55
GFLOPs

(c) Downstream performance comparison ViT-B/16 backbone.

18 ViT-B/32
~ 361 N=2 N=1
SR N3 (savey  (40%) °
v N=5 (-60%) ®
? 341 (-67%) ././:01
2 N0 gF T N2 (-40%)
= (.73%/ N
® 3] NS Residual ViT (CE)
N PR —o— ResidualViT (MSE)
301(-73%) ® CLIP
4 6 8 10 12 14
GFLOPs
(b) Downstream performance comparison ViT-B/32 backbone.
45.0 ViT-L/14
' N=2 N=1
42.51 Neg (56%)  (42%) °
~ -63%
R 40.0 s 9% e
0 ® =
3 375 0 o N2 2w
2 (1_\1;/()) / N=3 (56%)
< 35.01 "./0 (-63%)
® 3251 - (_“7’1:;) Residual ViT (CE)
F 77%) —e— ResidualViT (MSE)
3001 e CLIP
275+ . . . : ; T 7 7
25 50 75 100 125 150 175 200 225
GFLOPs

(d) Downstream performance comparison ViT-L/14 backbone.

Figure 6. Distillation loss ablation. We ablate replacing the CE loss (Equation 2) with a Mean Square Error (MSE) loss. (a) Depicts
the distillation pipeline when the MSE loss is used. (b-c) Summarizes the downstream performance comparison for the three different

backbone sizes (ViT-B/32, ViT-B/16, ViT-L/14). The red represents CLIP’s performance, while the

and blue curves represent the

performance of ResidualViT on the Charades-STA dataset when the distillation uses the original CE loss or the MSE loss respectively.
We perform this ablation adopting the ViT-B/32 backbone. We conclude that the MSE loss, which does not require language annotations,

produces near-identical results.

ever, the token drop strategy consistently outperforms this
approach while maintaining the advantage of not requiring
any weight modifications to the encoder &y,.

Distillation Strategy. To evaluate our distillation approach,
we replace the Cross-Entropy (CE) loss (Equation 2) with a
Mean Squared Error (MSE) loss, computed between frame
features as || fZ, = Y ixll2-

This alternative setup, illustrated in Figure 6a, removes
the need for language annotations, reducing training costs
by approximately 10% for ViT-B/32, 3% for ViT-B/16, and
1.5% for ViT-L/14. However, we emphasize that our pri-
mary focus is on the efficient deployment of a trained model
(forward inference), rather than optimizing training effi-
ciency.

Figure 6b presents the results for ViT-B/32, where both
loss functions achieve comparable accuracy, indicating that
our distillation method remains effective regardless of the
loss choice. However, in Figure 6¢ and Figure 6d, the CE
loss consistently outperforms the MSE loss, supporting our
choice of a language-supervised CE approach as the optimal

strategy. For consistency, all training and testing hyperpa-
rameters remain unchanged across these ablations, ensuring
that accuracy differences stem solely from the choice of the
loss function.
Training Interleave Factor (/Nyp,i,) Ablation. In this sec-
tion, we evaluate how varying the interleave factor (Nryyin)
during training impacts ResidualViT’s accuracy and com-
putational cost for different NV values during inference. Ad-
ditionally, we explore whether different frame sampling
strategies during training affect the model’s final accuracy.
We consider two distinct sampling approaches: (a) Sample
Nrp,in frames per training video at a constant frame rate. (b)
Extract Ny, frames at a constant frame rate, but randomly
subsample the frames before inputting them into the net-
work. Our findings are summarized in Figure 7, where we
present the accuracy vs. cost trade-off on the Charades-STA
dataset using the B/32 backbone.

In this experiment, we train ResidualViT with vary-
ing Nrnin € 3,5,10 and test these models with N &
1,2,3,5,10. Note that Ny, = 3 is our default setting,
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Figure 7. Training interleave factor (N7,q:n) ablation. We compare the accuracy of ResidualViT when three different values of
Nrrain € {3,5,10} are used, and two different frame sampling strategies are implemented. In particular, we investigate (a) using all
Nrrain frames sampled at a constant FPS= 1.0, and (b) sampling a random number of frames from the Nr,q:, frames extracted at a
constant FPS= 1.0. Results are reported on the Charades-STA dataset using the B/32 backbone.

used for all other results in the manuscript.

Focusing on Figure 7(a), we observe that different val-
ues of Nrpin produce very similar results, with Ny, = 10
showing slightly better accuracy for N = 5 and N = 10
compared to models trained with Nyyin = 3.

Figure 7(b) supports the same conclusion. In this case,

no clear advantage is observed for larger Ny, as accuracy
remains very similar across all configurations. Interestingly,
Ntrain = 3 (our default setting) shows slightly better accu-
racy for N =1, N =3and N =5.
Frame Rate Ablation. In this section, we evaluate the
accuracy-cost trade-off between frame rate and computa-
tional cost for CLIP and Residual ViT on the Charades-STA
dataset.

Figure 8 illustrates the accuracy of both models on the
NLTVG task as the frame rate varies from 0.5 to 3.0 (our
default value). At the default frame rate of 3.0, CLIP
achieves an R@1-IoU=0.5 score of 35.9, while Residu-
alViT achieves 34.2—a slight accuracy drop, but with an
approximate 53% reduction in encoding cost. As the frame
rate decreases, both methods exhibit a steady decline in
accuracy. However, it is noteworthy that ResidualViT at
FPS=3 incurs a lower cost than CLIP at FPS=2 while
achieving comparable accuracy. Additionally, Residual ViT
at FPS=2 outperforms CLIP at FPS=1, with similar compu-
tational cost.

Finally, we observe that the decrease in accuracy for
Residual ViT as the FPS decreases becomes steeper than for
CLIP. We believe that this is due to the large temporal gap
between consecutive frames, which hinders the ability of
the residual tokenizer to provide valuable information when
computing P-features.
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Figure 8. Frame rate ablation. We compare CLIP (blue) and
Residual ViT ( ) features on the Charades-STA dataset for
varying frame rates. The figure presents the accuracy (y-axis) vs.
cost (x-axis) trade-off.

Architecture Ablation on the MAD dataset. Table 8
presents the ablation of the main architecture components
of our model on the MAD [45] dataset. This ablation setup
is equivalent to the one presented in Table 1 of the main
paper.

The first row (a) reports the accuracy of the original
CLIP model, which requires 21.8 GFLOPs/sec for fea-
ture computation. Applying the token reduction strategy
uniformly across all frames (b) results in an 85% reduc-
tion in computational cost but leads to substantial accuracy
losses of over 55% across all ToU thresholds. Introducing
our interleave strategy with N=2 (c¢) significantly improves
grounding accuracy while using only 47% of the original
compute budget, with a relative accuracy drop of approx-
imately 25%. Finally, incorporating the residual tokenizer



Residual MAD Avg. Cost
Token Interleave  Tokenizer R@1 1 Feature/sec |
Reduction Factor (Distilled) | IoU=0.3 IoU=0.5 (GFLOPs)
a. 5.5 3.2 21.8
b. 4 2.3 1.4 4.4 _gs5%)
[ v v 4.2 2.6 10.2(_53%)
d. v v v 5.4 3.1 10.2(_53%)

Table 8. Architecture ablation. We ablate the main components
of our architecture: the token reduction module, the interleave fac-
tor, and the distilled residual tokenizer. We set the token reduction
probability p to 85%, N = 2, and use the ViT-B/32 backbone on
the MAD dataset.

learned via distillation (d) adds virtually no computational
overhead and nearly matches the original CLIP accuracy,
with only a 0.1% absolute drop in accuracy.

These results are consistent with the findings in Table 1

of the main paper and further reinforce the effectiveness of
each architectural component.
Interleave Factor N and Benefits of Distillation on the
MAD dataset. In Figure 9, we explore the relationship
between grounding accuracy and computational cost as we
vary the number of interleaved frames (/N) on the MAD
dataset. Here, the baseline CLIP model is shown in red,
while our Residual ViT, applied with and without the dis-
tilled residual tokenizer module, is shown in and
blue, respectively. We vary N € {1,2,3,5,10}. This ab-
lation setup mirrors the one presented in the main paper for
the Charades-STA dataset.

We observe that for N=1 and N=2, ResidualViT
achieves accuracy on par with CLIP while reducing frame
encoding costs by 40% and 53%, respectively. Notably, re-
moving the residual tokenizer (blue) leads to a larger accu-
racy drop, highlighting the importance of distillation. In-
creasing N beyond 2 yields diminishing returns as cost sav-
ings start to plateau around 60%, while accuracy declines.
This accuracy drop is attributed to the growing difficulty of
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Figure 9. Interleaving frames (/N). Our ResidualViT ( )
closely retains CLIP’s (red) performance for N=1 and 2 while
reducing cost by up to 53%.
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Figure 10. Inference time comparison. When varying the batch
size, we showcase the runtime difference of a standard ViT (blue)
against our Residual ViT ( ). We demonstrate that our ap-
proach is ~2.5x faster than a standard ViT. Moreover, for the
same time budget (i.e., 10 seconds), we can accommodate ~2.5x
more samples in the batch without incurring Out Of Memory is-
sues.

predicting the CLIP feature at time ¢+ N from frame ¢, as
CLIP similarity decreases with larger temporal gaps, espe-
cially in MAD, which contains more diverse content. Since
Residual ViT approximates f;,  using a token subset and
the residual tokenizer, lower similarity makes the prediction
harder. This can be mitigated by retaining more tokens, but
at higher computational cost. As shown in Figure 9, N=2
provides the best trade-off between efficiency and accuracy.

These results align with those in Figure 4 of the main pa-
per and further validate the contributions of both the inter-
leave encoding strategy and the residual tokenizer module.

10. Residual ViT Runtime

In our manuscript, we have focused on characterizing the
computational cost reductions in terms of GFLOPs. How-
ever, our system introduces a dependency where P-feature
computation relies on the prior computation of I-features.
Specifically, the I-features are first processed through the
ViT encoder £y, followed by the computation of P-features
via the ResidualViT encoder £g, which also incorporates
the residual token. This design necessitates two sequen-
tial forward passes through distinct encoders, prompting us
to examine the encoding latency costs inherent to this ap-
proach. One possible way to mitigate the latency due to this
sequential dependency is via parallel processing via batch-
ing of the I-features, followed by batching of the P-features.

In Figure 10, we present the forward pass wall-clock la-
tency as a function of batch size, comparing the timings for
a standard ViT-L/14 model and our Residual ViT, which em-
ploys the same ViT-L/14 backbone. For each batch size, the
total time for Residual ViT is calculated as the sum of the
time taken to compute the I-features and the time to process
the P-features.



The graph indicates that our ResidualViT is more time-
efficient than the ViT baseline, benefiting from our design
optimized for efficient video encoding. In practice, our ar-
chitecture requires roughly 2.5 times less wall-clock time
to encode frames into features across most batch sizes. Ad-
ditionally, when the encoding time is constrained, e.g. 10
seconds, the baseline model can process a batch size of ap-
proximately 700 frames, whereas Residual ViT can handle a
batch size of about 1700 frames.

Note that, in the regime of small batch sizes (i.e., <
8), highlighted in the zoomed box in Figure 10, the ViT
model proves more economical compared to Residual ViT.
Nonetheless, it is crucial to remember that our focus is on
efficiently encoding numerous video frames for dense tasks,
making ResidualViT the preferred choice under these con-
ditions.

These experiments were performed using a single
NVIDIA V100 GPU. Timings for each batch size were ob-
tained by averaging results from 100 consecutive forward
passes to ensure statistical reliability. To guarantee precise
timing measurements, we employed the PyTorch function
torch.cuda.synchronize (), which halts the execu-
tion of the code until all pending GPU operations are com-
pleted. This function is critical for avoiding discrepancies
in timing due to asynchronous GPU execution.

11. Additional Task: Action Recognition

In this section, we evaluate the task of action recognition
by examining the accuracy gap between CLIP and Resid-
ualViT (N = 2, p = 85%) features, using the ViT-B/32
backbone for both models. The experiments are conducted
on the Kinetics-400 dataset [21] in a zero-shot setting.

The accuracy comparisons are presented in Table 9. In
particular, we investigate the accuracy trends and total en-
coding costs as the number of frames increases.

We observe that Residual ViT delivers competitive accu-
racy compared to CLIP features, with a minimum gap of
0.8% for Accuracy@1 at 3 frames and a maximum gap of
approximately 3.2% for Accuracy@1 at 4 frames. Similar
trends are observed for Accuracy@5. However, when ana-
lyzing the accuracy versus total encoding cost, Residual ViT
demonstrates a clear advantage: with 4 frames and a total
cost of 12.8 GFLOPs, it outperforms CLIP with 3 frames
and a total cost of 13.2 GFLOPs for both Accuracy@1 and
Accuracy @5. Furthermore, Residual ViT with 7 frames and
a total encoding cost of 21.2 GFLOPs achieves nearly iden-
tical accuracy to CLIP with 5 frames, which has a higher
total cost of 22.0 GFLOPs.

For the zero-shot setup of this experiment, each frame is
encoded using either CLIP or Residual ViT, and the result-
ing visual feature representations are averaged. Classifica-
tion is performed by combining the class labels with prompt
templates provided by the CLIP baseline'and encoding the

Number CLIP Total encoding Residual ViT Total encoding
of Frames|Acc@1 1T Acc@5 1 cost (GFLOPS)|Acc@1 1 Acc@5 1 cost (GFLOPS)

1 44.5 72.3 44 44.5 72.3 44

2 45.0 73.0 8.8 43.4 71.1 6.4

3 43.9 71.5 13.2 43.1 70.7 8.4

4 48.1 76.0 17.6 44.8 73.0 12.8

5 46.5 74.5 22.0 45.1 73.5 14.8

6 48.7 76.8 26.4 45.5 73.9 16.8

7 47.6 75.9 30.8 44.4 72.9 21.2

8 49.3 7.1 35.2 46.5 74.9 23.2

9 48.2 76.7 39.6 46.2 74.8 25.2

10 49.3 7.4 44.0 46.5 75.1 29.6

Table 9. Action Recognition. We report accuracy at 1 (Acc@1)
and accuracy at 5 (Acc@5) for CLIP and ResidualViT (N = 2,
p = 85%) features on the Kinetics 400 [21] dataset under a zero-
shot setting.

text using the language encoder. All prompt features per
class are then averaged, and cosine similarity between the
visual and text representations for each class is computed.
The classes are ranked by their similarity scores, and the
accuracy metric is computed accordingly.

12. Limitations and Discussion

We acknowledge several technical limitations of our ap-
proach. First, our method is specifically designed for the Vi-
sion Transformer (ViT) architecture, making it less applica-
ble to other architectures, such as convolutional or recurrent
neural networks. Nonetheless, we argue that transformer-
based models have proven to be among the most versatile
and scalable options in the deep learning landscape, sup-
porting their continued adoption and adaptation.

Second, Residual ViT is optimized for dense video pro-
cessing tasks, which may limit its efficacy in scenarios that
benefit from sparse frame sampling, such as action recogni-
tion or video retrieval. For such applications, the semantic
continuity captured by the residual token across temporally
distant frames may not be sufficient, suggesting a potential
area for future research.

Third, our token drop strategy relies on motion infor-
mation derived from the video’s compressed representation,
which may fail to capture subtle or small-scale movements,
such as those occurring in crowded scenes or during fine-
grained interactions. This limitation highlights the need for
more nuanced motion-aware selection strategies in future
work.

Fourth, our method is tailored to reduce the computa-
tional burden of video frame encoding in temporally dense
tasks. Other aspects of fine-grained video understanding
(e.g., precise spatial localization) remain open directions for
future investigation.

Lastly, our solution’s effectiveness heavily relies on

'Prompt templates can be found here: https://github.com/
openai/CLIP/blob/main/data/prompts.md#kinetics700
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the quality of the underlying large pre-trained foundation
model, such as CLIP [40]. Consequently, any inherent bi-
ases or limitations in the pre-trained model’s weights could
adversely affect our method’s accuracy.

Note that we hypothesize that the WebVid training does
not introduce new information beyond what is already in
CLIP as the distillation trains only the residual tokenizer so
that Residual ViT approximates CLIP features (Section 3.2).
Moreover, less than 0.3% of the parameters differ between
the two models. We leave for future exploration the full
fine-tuning of CLIP on WebVid which has the potential to
improve accuracy on downstream tasks. Nonetheless, our
approach can seamlessly benefit from this fine-tuned repre-
sentation instead of CLIP.

13. Qualitative Results of Natural Language
Video Grounding

In Figure 11-13, we present a series of qualitative results
from the Charades-STA dataset, demonstrating the efficacy
of our zero-shot grounding baseline in identifying relevant
event boundaries within video content. In each example, we
first show a subset of the video frames along with the tex-
tual query on top. Then, we illustrate the temporal sequence
of similarity scores {.5; }*; produced by computing the co-
sine similarity between each frame feature and the sentence
feature. We also show the watershed threshold, which is
used to determine the start and end moment predictions as
detailed in Section 3. For each example, the figure also il-
lustrates the top-1 predicted temporal segment ( ) and
the ground truth annotation (green).

In the examples depicted in Figures 11(a-b) and 12(a-
b), our algorithm is capable of discriminating subtle frame
differences and produces very precise temporal boundaries
that provide an IoU > 0.9 with the ground truth. In ex-
ample 11a, the feature representations of the frames and
the sentence provide higher similarity when the television is
present, in accordance with the query “The person is watch-
ing television”. Similarly, in example 11b, the algorithm
can distinguish whether the person is holding a book de-
spite the high resemblance among all frames, correctly pre-
dicting the temporal span relative to the textual query “A
person reads a book” with IoU = 0.93. The cosine similar-
ity profile in example 12a clearly differentiates between the
section of the video in which the person is eating a sand-
wich and when they are simply smiling at the camera, pre-
dicting the grounding of the action “A person is eating a
sandwich”, achieving IoU = 0.98. Example 12b presents
a challenging scenario, “A person is fixing a light”, where
the model needs to recognize the light’s transition from off
to on. Despite these complexities, our method provides a
correct prediction with an IoU = 0.95.

Nonetheless, our approach can provide meaningful pre-
dictions that, however, do not align well with the ground

truth moment. We detail one such example in Figure 13a.
For the query “A person puts a coffee cup on a shelf”,
we predict a temporal span that is correctly centered to the
ground truth span but is twice as long as the ground truth
moment, yielding an IoU of approximately 0.5. Howeyver,
if we pay attention to the video frames, one could argue the
prediction is still correct, as it begins when the person opens
the cabinet and finishes after the person has placed the cof-
fee cup in it.

Lastly, in Figure 13b, we depict an example in which our
proposed solution fails. The action described by the query
“Person undressing by the shelf beside the doorway” shows
a long duration, effectively producing a high similarity re-
sponse for a good part of the video. This, in turn, affects
the watershed threshold, which is proportional to the aver-
age similarity scores. Due to the high value of the threshold,
our algorithm produces an incorrect prediction that does not
overlap with the ground truth.
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(a) Grounding example. We observe an IoU = 0.93 between the ground truth moment and the predicted one.

Query: A person reads a book.
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(b) Grounding example. We observe an IoU = 0.93 between the ground truth moment and the predicted one.

Figure 11. Qualitative results. We present two different examples in which our zero-shot algorithm can effectively ground the sentence in
the video. We showcase the comparison between the ground truth annotation (green) and our top-1 prediction (orange).



Query: The person is eating a sandwich.

0.24 e ' :
= P LN N —+— Residual ViT
. e o-.\ , ',0 .
So2l : N e Watershed Threshold
£ - \'\.
a \0
o 0:20 \,
= .
Z e
Goa1s e,
0~.\.7.7._.-0—Q_.\._.‘._._._.,.—o—ofo—070-._._0—0—.—0-0~.~.~.7._.’.,0—0—0—0—0—0—0-0—.—0
0 5 10 T'ls © 20 25 30
ime (s
Ground truth
Os 139s
Prediction
0s 13.6s

(a) Grounding example. We observe an IoU = 0.98 between the ground truth moment and the predicted one.

Query: A person is fixing a light.
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(b) Grounding example. We observe an IoU = 0.95 between the ground truth moment and the predicted one.

Figure 12. Qualitative results. We present two different examples in which our zero-shot algorithm can effectively ground the sentence in
the video. We showcase the comparison between the ground truth annotation (green) and our top-1 prediction (orange).
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Figure 13. Qualitative results. We present two different examples in which our zero-shot algorithm can effectively ground the sentence in
the video. We showcase the comparison between the ground truth annotation (green) and our top-1 prediction (orange).
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