
DMesh++: An Efficient Differentiable Mesh for Complex Shapes

Supplementary Material

7. Details about Minimum-Ball algorithm

7.1. Algorithm

Algorithm 1 Minimum-Ball
1: P,F← Set of points and query faces
2: αmin ← Coefficient for sigmoid function
3: Bc

F, B
r
F ← Compute-Minimum-Ball(P,F)

4: Pnearest
F ← Find-Nearest-Neighbor(Bc

F, P)
5: d(BF,P)← Br

F − ||Pnearest
F −Bc

F||
6: λmin(F)← σ(d(BF,P) · αmin)
7: return λmin(F)

We formally describe the Minimum-Ball algorithm
in Algorithm 1.

• Line 1: We define the given set of points (specifically,
their positions) as P and the query faces as F.

• Line 2: We introduce αmin, the coefficient for the sig-
moid function used to map the signed distance to a prob-
ability. Details on determining αmin are provided in Ap-
pendix 7.3.

• Line 3: For each query face F ∈ F, we compute the min-
imum bounding ball (BF) as described in Appendix 7.2.
We denote the entire set of bounding balls as BF, their
centers as Bc

F, and their radii as Br
F.

• Line 4: For each F ∈ F, we find the nearest neighbor of
Bc

F in P − F . However, this operation cannot be paral-
lelized across all query faces because the set P−F varies
for each face. To address this, we find (d + 1)-nearest
neighbors of Bc

F in P, where d is the spatial dimension.
This approach ensures correctness in two scenarios:
– If F ∈ Fmin, the bounding ball BF does not contain

any points from P within it, and the points on F are the
d-nearest neighbors of Bc

F . To find the nearest neigh-
bor in P−F , we need to consider (d+1)-nearest neigh-
bors.

– If F /∈ Fmin, only the single nearest neighbor of Bc
F is

relevant.
To safely handle both cases, we always search for (d+1)-
nearest neighbors and then select the first neighbor from
the list that does not belong to F .

• Line 5: We compute the signed distance d(BF,P) for all
query faces.

• Line 6: The signed distance is converted to a probabil-
ity using the sigmoid function, with αmin as the scaling
factor.

• Line 7: Finally, the algorithm returns the computed prob-
abilities for all faces.

(x, 0, 0)

(0, 0, 0)

(x/2, x/2, -x/2)

(x/2, x/2, x/2)

(x/2, x/8, -x/8)
(x, 0)(0, 0)

(x/2, x/2)

Figure 13. Common signed distance for a 2D (left) and 3D
(right) face in (initial) regular grid. We compute the signed dis-
tance by subtracting the radius of the minimum bounding ball from
the length of the red line. The red dot represents the center of the
minimum bounding ball.

7.2. Minimum-Ball computation
Let us define a faceF = {p1, p2, . . . , pd}, where pi ∈ P. To
determine the bounding balls of F , we first identify the set
of points that are equidistant from the vertices of F . Among
these, we select the point lying on the hyperplane containing
F as the center of the minimum bounding ball, denoted as
Bc

F .
When d = 2, the center simplifies to the midpoint of F :

Bc
F

∣∣
d=2

=
1

2
(p1 + p2). (6)

For d = 3, the computation is more complex 7:

B
c
F

∣∣
d=3

= p1 +
||d2||2(d1 × d2) × d1 + ||d1||2(d2 × d1) × d2

2||d1 × d2||2
, (7)

where d1 = p2 − p1 and d2 = p3 − p1.
Unlike the case where d = 2, for d = 3, we cannot

compute Bc
F if ||d1 × d2|| = 0. During computation, cases

where this value falls below a certain threshold are marked
and excluded from subsequent steps to avoid numerical in-
stability.

After determining Bc
F , we calculate the radius Br

F as the
distance between Bc

F and the points on F .

7.3. Sigmoid coefficient αmin

The sigmoid coefficient αmin plays a critical role in de-
termining the probability to which a signed distance d is
mapped. Even if a face F satisfies the Minimum-Ball con-
dition by a large margin (d(BF ,F) ≫ 0), indicating a high
existence probability for F , a small αmin value would re-
sult in the derived probability being only slightly greater

7Derived from the Geometry Junkyard: https://ics.uci.edu/
˜eppstein/junkyard/circumcenter.html

https://ics.uci.edu/~eppstein/junkyard/circumcenter.html
https://ics.uci.edu/~eppstein/junkyard/circumcenter.html

than 0.5. To minimize such mismatches, we set αmin based
on the density of the grid from which optimization begins.

As discussed in Appendix 8.2.1, the reconstruction pro-
cess often starts from a fixed triangular (2D) or tetrahedral
(3D) grid (Fig. 16). At the initial state, every face in the grid
satisfies the Minimum-Ball condition (Appendix 8.2.1). No-
tably, every interior face in the grid shares a common signed
distance dcommon > 0. Let us denote x as the edge length
of the grid, applicable for both 2D and 3D cases. Then, the
common signed distance can be computed as follows:

For d = 2:

dcommon =

√
3− 1

2
x. (8)

For d = 3:

dcommon =

√
34− 3

√
2

8
x. (9)

In Fig. 13, we provide an illustration of the reasoning be-
hind these results. By calculating these common signed dis-
tances, we use them to determine αmin. Specifically, dur-
ing the first epoch, we set αmin = 32/dcommon, ensuring
that the probability for every face in the grid is initialized to
σ(32) ≃ 1.0.

In subsequent epochs, αmin is adjusted to account for
the additional points introduced during subdivision. If α1

min

represents the value in the first epoch, the value for the i-th
epoch is given by:

αi
min =

α1
min

2i−1
. (10)

7.4. Nearest neighbor caching
In Secs. 3.2 and 5.1, we demonstrated how the Minimum-
Ball algorithm significantly accelerates tessellation. This
process can be further optimized by periodically caching the
K-nearest neighbors of each Bc

F in P and using the cached
neighbors for computing probabilities until the next cache
update. This optimization is feasible because the K-nearest
neighbors generally do not change significantly during the
optimization process.

Let us define the number of optimization steps as n0 and
the number of steps between cache updates as n1. At every
n1 steps, we refresh the query faces F based on the current
set of points P and recompute the centers of the minimum
bounding balls for the query faces (Bc

F). Then, we identify
the K-nearest neighbors of Bc

F in P. In practice, we com-
pute the (K + d)-nearest neighbors instead, as explained in
Appendix 7.1, to ensure robustness.

During the subsequent optimization steps, for a given
face F , we compute the distance from Bc

F to the cached
K-nearest neighbors in P and select the nearest neighbor
from the cache to compute the signed distance d(BF ,P).

D
M

es
h

D
M

es
h+

+

GT Step 0 Step 25 Step 50

Figure 14. Role of visibility gradient in geometric optimization.
In this experiment, we optimize the translation vector of the object
by comparing its rendered image and the ground truth image on
the left. Since the differentiable renderer of DMesh [42] does not
implement visibility gradient, while ours does, DMesh fails to find
the correct translation vector.

This mechanism is described in detail in Algorithm 2 and
Appendix 8.2.2 in the context of point position optimiza-
tion. In our experiments for 3D multi-view reconstruction,
we set n0 = 2000, n1 = 50, and K = 10.

8. Details about Reconstruction Process
In this section, we provide implementation details about our
reconstruction process described in Sec. 4. Before delving
into these details, we introduce the loss formulations for re-
construction problems.

8.1. Loss Formulation
Our final loss, L, is comprised of main reconstruction loss
(Lrecon) and two regularization terms: Lqual and Lreal.

L = Lrecon + λqual · Lqual + λreal · Lreal. (11)

We explain each of these terms below.

8.1.1. Reconstruction Loss (Lrecon)
Reconstruction loss drives the reconstruction process by
comparing our current probabilistic mesh and the given
ground truth observations. For different observations, we
need different loss functions as follows.

Point Cloud When ground truth point clouds are pro-
vided, we utilize the expected Chamfer Distance (CD) pro-
posed by [42]. In this formulation, when sampling points
from our mesh, we assign an existence probability to each
sampled point, which matches the probability of the face
from which the point is sampled. The expected CD incor-
porates these probabilities, unlike the traditional Chamfer
Distance, which does not. For further details, refer to [42].

Multi-view Images For rendering probabilistic faces, we
interpret each face’s existence probability as its opacity, fol-
lowing [42]. To render large number of semi-transparent

A

B

C

a

b

c

d
e

f

g
1

2

3
Details of 2.

Figure 15. Implementation of anti-aliasing in our differentiable
renderer. On the left, we show the process of anti-aliasing: 1)
Find pixels that overlap with the given triangle, 2) Find the area
that each pixel overlaps with the given triangle, and 3) Determine
the color of each pixel based on the overlap area. On the right, we
show details of the step 2.

faces efficiently, we use the differentiable renderer of [42],
but we found out that it does not implement visibility gra-
dient that is necessary for optimizing geometric proper-
ties (Fig. 14). For the details about this visibility gradient,
please refer to [19], which implemented the visibility gradi-
ent using anti-aliasing. Following their path, we enhanced
the differentiable renderer of DMesh by implementing anti-
aliasing in CUDA, which provides us visibility gradients.

In Fig. 15, we briefly illustrate how we implemented
anti-aliasing in CUDA. Specifically, for each (triangular)
face-pixel pair (F, P), we project F onto the image space
and compute the overlapping areaA(F, P) between the pro-
jected triangle and the pixel (Fig. 15 right, blue area). De-
noting the total area of the pixel as A(P), the ratio of the
overlapping area in the given pixel, ρ(F, P), is computed
as:

ρ(F, P) =
A(F, P)

A(P)
. (12)

We use ρ(F, P) to determine the opacity of the face F
at the pixel P . If the opacity of F is α(F), we compute the
face opacity at pixel P , α(F, P), as:

α(F, P) = α(F) · ρ(F, P) ≤ α(F). (13)

Thus, the opacity of F at P is proportional to the over-
lapping area between the triangle and the pixel.

In the right figure of Fig. 15, we illustrate the process of
computing the overlapping areaA(F, P). The vertices of F
are projected onto the image plane and visited in counter-
clockwise order (e.g., A - B - C - A in the illustration). We
then find the intersection points between the triangle edges
and the pixel boundaries. These intersection points form the
vertices of the (convex) overlapping polygon.

For example, vertices (a) and (b) are found by calculat-
ing the intersections of AB with the pixel boundaries. The
vertices of the overlapping polygon are stored in counter-
clockwise order, and the polygon is subdivided into a set

of sub-triangles, as shown by the dotted red lines in the vi-
sualization. The total area of the overlapping polygon is
obtained by summing the areas of the sub-triangles.

Using this enhanced differentiable renderer, we render
multi-view images and compute the L1 loss between the
ground truth images as the reconstruction loss, Lrecon.

8.1.2. Triangle Quality Loss (Lqual)
To improve the triangle quality of the final mesh, we adopt
the triangle quality loss (Lqual) of DMesh [42]. Specifi-
cally, the loss is defined as follows:

Lqual =
1

|F|
∑
F∈F

AR(F) · Λ(F), (14)

where F is the set of every face combination we con-
sider, AR(·) is a function that computes aspect ratio of the
given face, and Λ(·) is the face probability function defined
in Sec. 3.1.

8.1.3. Real Loss (Lreal)
We minimize the sum of point-wise real values (ψ), so that
we can remove redundant faces as much as possible during
optimization. The loss Lreal is simply defined as:

Lreal =
1

|P|
∑
p∈P

Ψ(p), (15)

where Ψ(·) is the function that returns the real value of
the given point, as defined in Sec. 3.1.

8.2. Reconstruction Steps
Now we provide detailed explanations about each step in
the reconstruction process.

8.2.1. Step 1: Initialization
We initialize our point features differently for two different
scenarios: when sample point cloud is given or not.

Point Cloud Init. When a point cloud sampled from the
target shape is given, we can initialize our point features us-
ing the point cloud, so that the initial configuration already
captures the overall structure of the target shape (Fig. 3).
Specifically, for the given point cloud, we estimate the den-
sity of the point cloud by computing the distance to the near-
est point for each point. Then, we down sample the point
cloud using a voxel grid, of which size is defined as the
point cloud density, to remove redundant points and holes.
Finally, we follow the initialization scheme of DMesh [42]
using the down sampled point cloud.

Regular Grid Init. If we do not have any prior knowl-
edge about the target shape, we first organize the points in
a regular grid, ensuring that every face in the grid satisfies

Figure 16. Grid structure to initialize real values in 2D (left)
and 3D (right). Every face in the grid structure satisfies Minimum-
Ball condition (Definition 3.1).

the Minimum-Ball condition (Definition 3.1), and initialize
the point-wise real values (ψ) with additional features (e.g.
colors). This regular grid guarantees that the faces observed
in this step will also be observable in the subsequent step,
where the Minimum-Ball algorithm determines face exis-
tence. For d = 2, this condition is satisfied by forming ev-
ery triangle in the grid as an equilateral triangle. For d = 3,
we use a body-centered cubic lattice. The grids are illus-
trated in Fig. 16.

With these fixed points and faces, we formulate the final
loss by setting λqual = 0 and λreal = 10−4 in Eq. (11), and
minimize it to determine which faces to include in the final
mesh. After optimization, we collect points with real values
larger than 0.01 to ensure that as many faces as possible are
available for the next optimization step, thereby reducing
the risk of holes in the surface.

8.2.2. Step 2: Position Optimization
In this step, we fix the point-wise real values (ψ) and opti-
mize only the point positions. For clarity, we formally de-
scribe the process in Algorithm 2, and explain the algorithm
line by line below:
• Lines 1-2: For the given set of points, we denote their

positions as P and their real values as Ψ.
• Line 3: We define the total number of optimization steps

as n0.
• Line 4: We define the number of optimization steps re-

quired to refresh query faces and their nearest neighbor
cache as n1. Since point positions are optimized, the
point configuration evolves during optimization, poten-
tially leading to the emergence of new faces that were
previously unobservable. To account for these changes,
we refresh the query faces periodically.

• Line 5: We denote the number of nearest neighbors to
store in the cache for the query faces as K.

• Lines 6-7: The optimization process runs for n0 steps.
• Lines 8-12: At every n1 step, we update the query faces

based on the current point configuration.
In the Update-Query-Faces function, which uses
point positions and their real values, we:

Algorithm 2 Position Optimization

1: P,Ψ← Set of points and their real values
2: αmin ← Coefficient for sigmoid function
3: n0 ← Number of optimization steps
4: n1 ← Number of refresh steps for query faces
5: K ← Number of nearest neighbors to store in cache
6: i← 0
7: while i < n0 do
8: if i mod n1 = 0 then
9: F← Update-Query-Faces(P,Ψ)

10: Bc
F, B

r
F ← Compute-Minimum-Ball(P,F)

11: C← Find-KNN(Bc
F,P, K)

12: end if
13: Bc

F, B
r
F ← Compute-Minimum-Ball(P,F)

14: Pnearest
F ← Find-NN-CACHE(Bc

F,C)
15: d(BF,P)← Br

F − ||Pnearest
F −Bc

F||
16: λmin(F)← σ(d(BF,P) · αmin)
17: λ(F)← λmin(F)
18: L← Compute-Loss(P,F, λ(F))
19: Update P to minimize L
20: i← i+ 1
21: end while

– Extract points with a real value of 1.
– For each extracted point, find its 10-nearest neighbors

that also have a real value of 1, since any face contain-
ing a point with a real value of 0 is considered non-
existent.

– Perform Delaunay Triangulation (DT) for the entire
point set and collect faces in DT where all points have
a real value of 1. This ensures the inclusion of as many
faces as possible during optimization, helping to elim-
inate potential holes later.

For the updated query faces, we compute the centers of
their minimum bounding balls. Subsequently, we identify
the K-nearest neighbors of these centers in P and store
this information in the nearest neighbor cache C.

• Lines 13-16: Using the current point configuration, we
compute the minimum bounding balls (BF) for the query
faces. For each bounding ball center, we find the near-
est neighbor in the nearest neighbor cache C by calculat-
ing the distances to points in C and selecting the closest
one. We then compute the signed distance d(BF,P) for
the query faces and use it to get the probability λmin(F).

• Line 17: Since the query faces consist only of points with
a real value of 1, we set the final face probability λ(F) to
be the same as λmin(F) (Sec. 3.1).

• Line 18: Based on the point positions, query faces, and
their existence probabilities, we compute the loss L to
minimize following Eq. (11).

• Lines 19-20: Finally, we update the point positions P to
minimize L and iterate the process.

A

B

C D E

A

B

C D E

Figure 17. Point insertion for removing undesirable face. (Left)
To reconstruct the ground truth shape, we need to set the real value
(ψ) of points A-E to 1. The point rendered with dotted line has real
value of 0. Then, we observe unnecessary faceBD exists. (Right)
To remove this face, we insert additional point that carries 0 real
value near the unnecessary face.

8.2.3. Step 3: Real Value Optimization
In this step, we re-optimize the point-wise real values while
keeping the point positions fixed. From the current point
configuration, we identify all faces in the Delaunay Tri-
angulation (DT) that satisfy the Minimum-Ball condition.
Note that any face satisfying this condition must exist in the
DT (Lemma 3.2). Thus, we first compute the DT of the
points and then verify whether each face in the DT satisfies
the Minimum-Ball condition.

Next, we follow a similar optimization process to Step
1 (Appendix 8.2.1). Additionally, if it was the multi-view
reconstruction task, we remove invisible faces to remove
redundant faces as much as possible. If this was the last
epoch, we return the post-processed mesh.

8.2.4. Step 4: Subdivision

A
B

C

D

EF

To reconstruct fine geometric details
of the given shape, we subdivide the
current mesh mainly by adding points
with ψ = 1 at the middle of edges
that are adjacent to currently existing
faces. In the inset, points E,D,F are
the newly inserted points. They form 4 sub-faces with
A,B,C, and they all satisfy Definition 3.1. Therefore, we
can guarantee that these sub-faces will exist at the start of
next epoch. Note that this guarantee does not hold for WDT.

At the same time, it is also possible to insert additional
points into faces that should not exist in the next epoch, ef-
fectively removing such faces at the start of the next epoch.
For example, during the real value optimization step in the
pipeline (Fig. 6, Appendix 8.2.3), invisible faces are re-
moved for multi-view reconstruction task. After optimiza-
tion, we may observe removed faces with all their points
have a real value of 1.0, creating a contradiction. This situ-
ation could arise due to ambiguities in the mesh definition,
as illustrated in Fig. 17.

To eliminate these undesirable faces, additional points
with a real value of 0 are inserted at their circumcenters.
Consequently, after subdivision, several holes may appear

on the surface because these additional points might also be
inserted into faces that should exist (Fig. 6). However, most
of these holes are resolved during subsequent optimization
steps.

9. Experimental Details and Additional Results
In this section, we outline the experimental settings used for
the results in Sec. 5 and present additional results to support
our claims.

9.1. Dataset
Here, we provide details on the datasets described
in Sec. 5.2.

9.1.1. Font
We used four font styles: Pacifico, Permanent-Marker,
Playfair-Display, and Roboto.

9.1.2. Thingi10K
We manually selected 10 closed surfaces and 10 open sur-
faces from the Thingi10K dataset [52]. Specifically, we
used the following models, denoted by their file IDs:
• Closed surfaces: 47926, 68380, 75147, 80650, 98576,

101582, 135730, 274379, 331105, and 372055.
• Open surfaces: 40009, 41909, 73058, 82541, 85538,

131487, 75846, 76278, 73421, and 106619.
These models were chosen because they exhibit minimal

self-occlusions, enabling dense observations from multi-
view images. Additionally, we randomly selected 500 mod-
els and used for comparisons.

9.1.3. Objaverse
We manually selected 30 mesh models that exhibit diverse
topology from Objaverse [10], which include both closed
and open surfaces, and also have small scenes. Some of
these models are rendered in Figs. 3, 6, 9, 19 and 20.

9.2. 2D Point Cloud Reconstruction
9.2.1. Hyperparameters
DMesh++
• Learning rate (real value, ψ): 0.3
• Learning rate (position): 0.001
• Number of epochs: 1
• Number of optimization steps

– Step 1 (Real value initialization): 100
– Step 2 (Point position optimization): 500

9.2.2. Reconstruction of Complex Drawings
In Fig. 18, we present the reconstruction results for com-
plex 2D drawings. As the figure illustrates, DMesh++ suc-
cessfully reconstructs intricate 2D geometries from point
clouds, even when the number of edges approaches nearly
1 million.

(a) Flower, # Edge = 99K, 6 min. (b) Eagle, # Edge = 179K, 11 min. (c) Picasso, # Edge = 159K, 8 min.

(d) Egyptian, # Edge = 227K, 19 min. (e) Chinese, # Edge = 987K, 86 min.

Figure 18. 2D point cloud reconstruction result for complex drawings. For each drawing, we report both the number of edges and the
reconstruction time. For the Chinese drawing, we additionally render the “imaginary” part on the right to clearly illustrate its complexity.

9.3. 3D Point Cloud Reconstruction

9.3.1. Hyperparameters
DMesh++
• Initial Grid Edge Length: 3× input point cloud density
• Learning rate (position): 0.001
• Number of epochs: 1
• Number of optimization steps

– Step 2 (Point position optimization): 2000
– Step 3 (Real value optimization): 0

9.4. 3D Multi-View Reconstruction

9.4.1. Hyperparameters
Remeshing [33]
• Image Batch Size: 8
• Number of Optimization Steps: 1000
• Learning Rate: 0.1
• Edge Length Limits: [0.02, 0.15]

The ”Edge Length Limits” were adjusted to produce
meshes with a similar number of vertices and faces to other
methods for a fair comparison.

DMTet [38]
• Image Batch Size: 8
• Number of Optimization Steps: 5000
• Learning Rate: 0.001
• Grid Resolution: 128

The SDF was initialized to a sphere, as in the original
implementation, before starting optimization.

FlexiCubes [39]
• Image Batch Size: 8
• Number of Optimization Steps: 2000
• Number of Warm-up Steps: 1500
• Learning Rate: 0.01
• Grid Resolution: 80
• Triangle Aspect Ratio Loss Weight: 0.01

The SDF was initialized randomly, following the origi-
nal implementation. To improve the quality of the output
mesh, we adopted a triangle aspect ratio loss, designed to
minimize the average aspect ratio of triangles in the mesh.
The mesh was first optimized for 1500 steps as a warm-up
without the triangle aspect ratio loss, followed by 500 steps
with the additional loss.

Additionally, we observed that the output mesh often
included false internal structures, which significantly de-
graded the Chamfer Distance (CD) compared to the ground
truth mesh. To mitigate this, we performed a visibility test
on the output mesh to remove these false internal structures
as much as possible.

GShell [23]
• Image Batch Size: 8
• Number of Optimization Steps: 5000
• Number of Warm-up Steps: 4500

(a) Ground Truth (b) DMesh++ (c) DMesh (d) PoNQ (e) PSR (f) VoroMesh

Figure 19. Qualitative comparison of 3D point cloud reconstruction results for a closed surface (vase). For each image, we render the
view-point normal on the right, and the diffuse image on the left. Among the baseline methods that reconstruct watertight mesh from point
clouds, PoNQ [27] performs the best in reconstructing fine geometric details. While DMesh [42] fails at reconstructing such details due to
the lack of mesh complexity, DMesh++ successfully recovers them and produce comparable result to PoNQ.

(a) Ground Truth (b) DMesh++ (c) GShell (d) DMesh (e) FlexiCubes (f) DMTet (g) Remeshing

Figure 20. Qualitative comparison of 3D multi-view reconstruction results for a closed surface (sculpture). We render the input
diffuse and depth images alongside the ground truth image. For each image, we render the view-point normal on the left, and the diffuse
image on the right. We can observe that the reconstruction result of DMesh++ is as good as the other baseline methods that are optimized
for closed surfaces.

• Learning Rate: 0.01
• Grid Resolution: 80
• Triangle Aspect Ratio Loss Weight: 0.0001

To enhance the quality of the output mesh, we employed
the same additional measures as FlexiCubes. We found that
longer optimization steps were required for GShell com-
pared to FlexiCubes to effectively handle open surfaces.

DMesh++ Settings
• Initial Grid Edge Length: 0.05
• Learning Rate (Real Value, ψ): 0.01
• Learning Rate (Position): 0.001
• Number of Epochs: 2

– Image Res. / Batch Size at Epoch 1: (256, 256), 1
– Image Res. / Batch Size at Epoch 2: (512, 512), 1

• Number of Optimization Steps
– Step 1 (Real Value Initialization): 1000
– Step 2 (Point Position Optimization): 2000
– Step 3 (Real Value Optimization): 1000

In the first epoch, we used lower-resolution images as

part of a coarse-to-fine approach.

9.4.2. Limitations
Despite DMesh++’s success in reconstructing geometri-
cally accurate meshes from multi-view images (of a syn-
thetic object or scene), it currently cannot recover meshes
from real-world images. This limitation stems from an in-
adequate rendering model — our current per-vertex color
model is too simple to capture detailed geometry, and our
algorithm assumes full knowledge of lighting conditions,
which is not available in real-world scenarios.

To illustrate this, we applied our reconstruction algo-
rithm to real-world images from the DTU dataset [15], as
shown in Fig. 21. While our method approximates the real-
world images (Fig. 21(b)), the extracted mesh exhibits nu-
merous false floaters (Fig. 21(c)). We believe this subop-
timal result is due to the lack of proper rendering models
and regularizations, and addressing this issue by integrat-
ing DMesh++ with other reconstruction mechanisms is an
exciting direction for future research, as discussed in Sec. 6.

(a) Input images

(b) Rendering of reconstructed mesh

(c) False floaters in the reconstructed mesh

Figure 21. 3D reconstruction from real-world images in DTU
dataset [15]. The input images are shown on left, and the recon-
structed mesh is shown on right.

10. Reinforce-Ball algorithm
Here we introduce an experimental algorithm that further
enhances DMesh++’s capability. As discussed in Sec. 3.1,
DMesh++ no longer uses the per-point weights found in
DMesh [42]. In DMesh, optimizing per-point weights helps
control mesh complexity: stronger regularization on these
weights results in a simpler output mesh. Since DMesh++
lacks this mechanism, it cannot directly regulate mesh com-
plexity during optimization. To address this limitation, we
propose the Reinforce-Ball algorithm, which reduces un-
necessary faces while preserving essential geometric de-
tails.

10.1. Local Minima of Weight Regularization
Before delving into the details of the Reinforce-Ball algo-
rithm, we first highlight a limitation of DMesh’s per-point
weight regularization. Specifically, while per-point weights
are relevant for controlling mesh complexity, they alone
cannot achieve adaptive resolution or produce a mesh that is
both efficient and precise. Below, we explain the reasons in
detail, assuming that per-point probabilities are optimized
and that the Minimum-Ball condition is employed to com-
pute face probabilities.

In Fig. 22, we provide an example in a rendering sce-
nario. A camera is placed on the left, and three different
probabilistic meshes are shown on the right.

In case (1), there are three points: A, B, and C. By con-
necting points A and B, the ground truth shape can be per-
fectly reconstructed, making point C redundant. Assume
the optimization starts from this state, where all points have
an existence probability of 1.0. According to the Minimum-
Ball condition, the probabilities of faces AC and BC will
also be 1.0. In this scenario, if a ray from the camera in-
tersects the mesh, the accumulated opacity will be 1.0, rep-
resenting a fully opaque surface. Consequently, the recon-
struction loss will be 0.0, as the fully opaque faces perfectly
match the ground truth.

In case (3), the optimal configuration is rendered, where

1.0

1.0

1.0

1.0

1.0

1.0

0.8

1.0

0.8

0.8

0.2
A.O. = 0.84A.O. = 1.0

1.0

1.0

1.0

A.O. = 1.0

A

B

C

Figure 22. Local minima of weight regularization in a render-
ing setting. (1) The ground truth geometry is rendered in gray
dotted line. There are 3 points (A, B, C), where only the end
points (A, B) are necessary for fully representing the underlying
shape. Every point has weight 1.0, which is written to the next of
each point. In this case, faces AC and BC exist with probability
1.0, which corresponds to their opacity. In this case, for a ray that
goes through this mesh, the accumulated opacity (A.O.) becomes
1.0, and the reconstruction loss is 0. (2) When weight regulariza-
tion reduces the weight of (redundant) C to 0.8, the probability
of faces AC and BC becomes 0.8, and that of AB becomes 0.2.
However, in this case, the accumulated opacity of the same ray
becomes 0.84, which results in non-zero reconstruction loss. (3)
Therefore, with a small weight regularization, we cannot remove
C to get this optimal mesh, which contains only AB, and attains 0
reconstruction loss.

the redundant point C is removed. The probability of face
AB becomes 1.0, making it fully opaque. Again, the recon-
struction loss is 0.0.

In case (2), an intermediate state between cases (1) and
(3) is rendered. Assume that the probability of point C is re-
duced to 0.8 due to regularization. Consequently, the proba-
bilities of facesAC andBC are also reduced to 0.8 because
one of their endpoints, C, has a probability of 0.8. Simulta-
neously, the probability of face AB increases from 0 to 0.2,
as the probability of point C, which lies inside the minimum
bounding ball of the face, is 0.8.

Now, consider a camera ray passing through AB and
BC sequentially (the order does not matter due to their tight
overlap). Using alpha blending, the accumulated opacity is
computed as:

Accumulated Opacity: 0.2+(1.0−0.2) ·0.8 = 0.84. (16)

This calculation shows that the accumulated opacity is re-
duced to 0.84.

The key issue arises from the dependency between the
probabilities of AB, AC, and BC. In the above formula-
tion, the term (1.0−0.2) ·0.8 represents the probability that
the ray misses AB and hits BC. If the probabilities of AB
and BC were independent, this formulation would be cor-
rect. However, they are dependent: in fact, the probability
of BC equals 1.0−AB because both depend on the proba-
bility of C. Thus, the actual accumulated opacity should be:

Point
Sampling

B 1 2

3 4 Face
Extraction

1 2

3 4

0.21

0.22

0.30

0.37

1

2

3

4

Figure 23. Overview of Reinforce-Ball Algorithm. Based on
per-point existence probability (Φ(P)), we sample points for B
number of batches (Pi). Here we use B = 4, and assume we are
reconstructing shape “A”. The points with ψ = 1 are rendered in
black, while those with ψ = 0 are rendered in blue. Then, we
identify existing faces in each batch (Fi) based on Eq. (2). With
Pi and Fi, we compute loss for each batch. Note that the case
(1, 2) are better than (3, 4), because they reconstruct the shape
better (Li

recon). Also, the case (1) is better than (2), because it
has less number of points (Li

card). To minimize the expected loss
(E[Lrl]), we should maximize the probability to sample the case
1. We optimize Φ(P) to do that.

0.2 + (1.0− 0.2) · 1.0 = 1.0. (17)

However, the alpha blending technique used here does not
account for such dependencies, leading to a reduction in ac-
cumulated opacity. This reduction artificially increases the
reconstruction loss. To minimize the loss, the optimizer in-
creases the probability of C again, preventing convergence
to the optimal case (3).

This dependency issue creates a local minimum that the
previous formulation cannot overcome. This is why we pro-
pose the Reinforce-Ball algorithm.

10.2. Algorithm Overview
In the Reinforce-Ball algorithm, we define per-point exis-
tence probability and optimize it using stochastic optimiza-
tion technique [48]. The overview of this algorithm is given
in Fig. 23.

To elaborate, for a point p ∈ P, let us denote the prob-
ability of it as ϕ(p) ∈ [0, 1], and concatenation of them as
Φ(P). Then, assuming we sample points independently, we
can sample a set of points P from Φ(P) and compute its
probability as follows:

P (P|Φ(P)) = Πp∈Pϕ(p) ·Πp∈P−P(1− ϕ(p)). (18)

Now, we sample points for B batches, and denote the
sample points for i-th batch as Pi. Based on Pi and tes-
sellation function in Eq. (2), we can find out which faces
exist for the i-th batch. Importantly, this process does not
require evaluating all possible global face combinations; in-
stead, it focuses only on local combinations, leveraging the
minimum-ball condition in the tessellation function. We
write these faces as Fi, and use them for computing re-
construction loss for i-th batch (Li

recon). We also compute
“cardinality” loss for i-th batch (Li

card), which is just the

Algorithm 3 Reinforce-Ball
1: n0, n1 ← Number of epochs and optimization steps
2: B ← Number of batch samples
3: Φ← Per-point probabilities, initialized to 0.99
4: i← 0
5: while i < n0 do
6: F← Update-Query-Faces(P,Ψ)
7: BF ← Compute-Minimum-Ball(P,F)
8: j ← 0
9: while j < n1 do

10: (k = 1, ..., B)
11: Pk ← Sample-Points(P,Φ)
12: Fk ← Get-Exist-Faces(Pk,F, BF)
13: Lk

rl ← Compute-Loss(P,Pk,Fk)

14:
∂E[Lrl]

∂Φ ← Estimate-Gradient(Φ,Pk, Lk
rl)

15: Φ← Update-Gradient(Φ, ∂E[Lrl]
∂Φ)

16: end while
17: P,Ψ← Get-Remaining-Points(P,Ψ,Φ)
18: end while

number of sampled points (|Pi|). Then, we can compute
the loss Li

rl as

Li
rl = Li

recon + ϵcard · Li
card, (19)

where ϵcard is a small tunable hyperparameter to adjust the
weight of the cardinality loss. If we write the final loss for
a set of sampled points P as Lrl(P), we aim at minimizing
the expected loss:

EP∼Φ(P)Lrl(P) =
∑

P (P|Φ(P)) · Lrl(P). (20)

10.3. Formal Definition
In Algorithm 3, we formally describe the Reinforce-Ball al-
gorithm in detail:
• Line 1: In the Reinforce-Ball algorithm, we optimize per-

point probabilities for n0 epochs, with each epoch con-
sisting of n1 optimization steps. In our experiments, we
set n0 = 10 and n1 = 2000.

• Line 2: We define the number of batches used during
optimization as B. Increasing B improves the stability
of the gradient computation but also increases computa-
tional cost. In our experiments, we set B = 1024.

• Line 3: Initialize the per-point probability of every point
to 0.99, as all points are assumed to exist with high proba-
bility before optimization. The probabilities are not set to
1.0 to avoid every sampled batch (Line 11) including all
points, which would prevent optimization from progress-
ing.

• Lines 4-5: Perform multiple epochs of optimization.
• Line 6: Gather the possibly existing faces (F) based on

the current point configuration and their real values. This

Method (hyperparameter) CD(×10−6)↓ # Verts. # Edges. Time (sec)

DMesh [42] (0) 1.97 2506 2245 30.39
DMesh (10−4) 2.68 666 693 153.10
DMesh (10−3) 12.48 456 488 152.37

DMesh++ (0) 1.82 2862 2793 11.33
DMesh++ (10−6) 1.86 1386 1394 278.88
DMesh++ (10−5) 2.77 149 152 200.05

Table 6. Quantitative ablation studies on Reinforce-Ball algo-
rithm. As we increase ϵcard (in parenthesis) for DMesh++, we
can significantly reduce the mesh complexity without losing geo-
metric details, while DMesh cannot do the same with λweight.

function is the same as the one used in the Point Opti-
mization step (Appendix 8.2.2).

• Line 7: Compute the minimum bounding ball BF for the
gathered query faces.

• Lines 8-9: Perform the optimization steps within the cur-
rent epoch.

• Line 10: Consider B batches, each containing a different
point configuration based on the sampled points.

• Line 11: For each batch, sample points from P based
on their probabilities Φ. Each point is sampled indepen-
dently, and the probability of sampling a specific batch is
computed as shown in Eq. (18). The sampled points in
the k-th batch are denoted as Pk.

• Line 12: For each batch, determine the existing faces in F
based on the sampled points. Specifically, a face F exists
if all its points are included in the sampled points and its
BF satisfies the Minimum-Ball condition. The existing
faces in the k-th batch are denoted as Fk.

• Line 13: For each batch, compute the loss as the sum of
the reconstruction loss (Lrecon) and the cardinality loss
(Lcard), as discussed in Appendix 10.2.

• Line 14: Estimate the gradient of the expected loss
(E[Lrl]) with respect to the per-point probabilities Φ us-
ing the log-derivative trick [48]:

∇ΦEP∼Φ[Lrl] ≈
1

B

B∑
i=1

∇Φ logP (Pi|Φ) · Li
rl. (21)

To reduce the variance of the gradient, we normalize Lrl

across the batch before the computation [11].
• Line 15: Update Φ using the estimated gradients.
• Line 17: After completing an epoch, discard points

whose probability is below a specified threshold. In our
experiments, we set the threshold to 0.5. The remaining
points are used for the next epoch. As points are removed,
the query faces updated in Line 6 for the next epoch will
span a larger area than in the previous epoch.

10.4. Experimental Results
Using the Reinforce-Ball algorithm, we can reconstruct ef-
ficient 2D meshes from point clouds that adapt to local ge-

#E = 720 #E = 447 #E = 1339 #E = 151

(a) DMesh (b) DMesh++

Figure 24. Qualitative ablation studies on Reinforce-Ball al-
gorithm (for letter ‘Q’). We render “imaginary” (black) part and
“real part” (red, blue) together.

ometry. As described in Sec. 5.2.1, we conducted 2D point
cloud reconstruction experiments on the font dataset.

In Tab. 6, we present quantitative ablation studies on
the Reinforce-Ball algorithm. Increasing the tunable hyper-
parameter ϵcard (Appendix 10.2), which controls regular-
ization strength, leads to a rapid reduction in vertices and
edges. For instance, with ϵcard = 10−5, edges decrease by
nearly 94% with minimal impact on reconstruction quality.
DMesh [42] also offers a tunable parameter, λweight, for
weight regularization to reduce mesh complexity. However,
while edge reduction occurs, DMesh’s reconstruction qual-
ity degrades more quickly. At ϵcard = 10−5, our method
achieves a similar CD loss to DMesh with λweight = 10−4

but uses about 78% fewer edges. This advantage is also
evident in Fig. 24, where our Reinforce-Ball algorithm re-
moves redundant edges effectively and adapts the mesh to
local geometry. In contrast, DMesh’s edge removal disre-
gards local geometry, resulting in loss of detail.

Likewise, we successfully highlighted the limitation of
DMesh’s weight regularization and demonstrated that the
Reinforce-Ball algorithm can eliminate redundant mesh
faces within the DMesh++ framework without sacrificing
geometric details. However, since the method is not yet eas-
ily extensible to 3D and incurs high computational costs, we
include these results in the Appendix.

	Details about Minimum-Ball algorithm
	Algorithm
	Minimum-Ball computation
	Sigmoid coefficient min
	Nearest neighbor caching

	Details about Reconstruction Process
	Loss Formulation
	Reconstruction Loss (Lrecon)
	Triangle Quality Loss (Lqual)
	Real Loss (Lreal)

	Reconstruction Steps
	Step 1: Initialization
	Step 2: Position Optimization
	Step 3: Real Value Optimization
	Step 4: Subdivision

	Experimental Details and Additional Results
	Dataset
	Font
	Thingi10K
	Objaverse

	2D Point Cloud Reconstruction
	Hyperparameters
	Reconstruction of Complex Drawings

	3D Point Cloud Reconstruction
	Hyperparameters

	3D Multi-View Reconstruction
	Hyperparameters
	Limitations

	Reinforce-Ball algorithm
	Local Minima of Weight Regularization
	Algorithm Overview
	Formal Definition
	Experimental Results

