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In this supplementary material, we provide additional
implementation details in Sec. A. In Sec.B, we showcase the
plug-and-play functionality of our approach, demonstrating
how CoDa-4DGS enhances the performance of both vanilla
4DGS [8] and S®Gaussian [4]. Sec. C presents visualiza-
tion results for 4D dynamic scene editing, highlighting the
distinctions between our method and prior work that pre-
dominantly focuses on 3D. In Sec. D, we provide visual
results for novel view synthesis, addressing scenarios with
large ego-view angle shifts, thereby extending beyond pre-
vious evaluations that primarily consider small frame tran-
sitions in test sets. Additionally, Sec. E offers an in-depth
conceptual comparison with recent works, while Sec.F pro-
vides experimental results on efficiency and explores poten-
tial improvements. Sec. G includes extended 4D visualiza-
tions to demonstrate the robustness and versatility of our
approach.

A. Implementation details

In the implementation, for context awareness, we follow
and use LSeg [6] to maintain 128-dimensional semantic
features that link each Gaussian with temporal deforma-
tion. Thus, context awareness is represented by aggre-
gated semantic features across all Gaussians, i.e. f., €
RN*128 Temporal deformation awareness is built on AG,
such that f,; € RV*62 where for SH coefficients k = 48.
Additionally, the frame information is binarized and en-
coded as a periodic function to generate a time embedding
fime € RYX64 Since our primary comparison is with
S3Gaussian [4], we adopted similar hyperparameters. We
train for 50,000 steps, with a learning rate set to 1.6e~3,
which decays to 1.6e~%. For our loss function, we as-
sign weights for each as follows: Ay = 1, Apgsim = 0.2,
Aw =1, Ageprn = 0.5, Ay = 1.
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B. Plug-and-play

The core functionality of CoDa-4DGS lies in extract-
ing temporal deformation awareness and context aware-
ness, followed by Gaussian deformation compensation us-
ing DCN. This streamlined interface design makes CoDa-
4DGS a plug-and-play method. When integrating CoDa-
4DGS, we only need to focus on two aspects: acquir-
ing temporal deformation awareness and context awareness.
Since context awareness depends on components related to
2D foundation models, selecting an appropriate foundation
model is essential to complement CoDa-4DGS effectively.
For temporal deformation awareness, it is crucial to ensure
that the embedded method can extract temporal deforma-
tion, such as the vanilla 4DGS.

To validate the plug-and-play functionality of CoDa-
4DGS and its performance improvements over baseline
methods, we conducted ablation studies using vanilla 4DGS
and S3Gaussian on Scene 22 and Scene 02, respectively.
To ensure a fair comparison, we used identical hyperpa-
rameters, including learning rate, number of iterations, and
the number of frames. As shown in Tab. 1, incorporating
CoDa-4DGS led to performance improvements across all
metrics for both vanilla 4DGS and S2Gaussian, with ap-
proximately a 2% increase in global PSNR. Notably, the
improvement in dynamic PSNR was even more signifi-
cant, aligning with the findings in the main paper. These
results demonstrate that CoDa-4DGS effectively enhances
rendering performance for dynamic objects through defor-
mation compensation, making it particularly beneficial for
autonomous driving scenarios.

C. Scene editing

In CoDa-4DGS, each Gaussian is trained to encode 4D se-
mantic features, enabling context awareness. This allows
us to use text encoding to generate a corresponding refer-
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Table 1. Enhancing scene reconstruction accuracy via Plug-and-Play integration of CoDa-4DGS for Scene 22 and Scene 02.

Method ‘ ‘ Scene 22 ‘ ‘ Scene 02

Metric | PSNRT  SSIM{ PSNR*{ SSIM*1 || PSNRT  SSIM{ PSNR*{ SSIM*t
4DGS (CVPR 24) 3254 09327 2977  0.8767 29.14  0.8837 2419  0.7965
4DGS+CoDa-4DGS 3312 09437 3053  0.8802 || 29.84  0.8902 2496  0.8042
Improvement +0.58  +0.0110 +0.76  +0.0035 +0.70  +0.0065 +0.77  +0.0077
S3Gaussian (ECCV 24) 3349 09367 2979 08832 || 30.14  0.8998 2478  0.8087
S3Gaussian+CoDa-4DGS 3409 09441 3114  0.8935 3037 09030 2526  0.8150
Improvement +0.60  +0.0074 +1.35 +0.0103 || +023  +0.0032 +0.48  +0.0063

! * indicates that the metrics are calculated only for dynamic objects.
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Figure 1. Object decomposition for scene editing. We extract an object from one scene (Scene 22) and integrate it into other scenes
(Top: Scene 16 and Bottom: Scene 86). This process involves fusing two Gaussian models, leveraging instance decomposition in a 4D
spatial-temporal space to achieve realistic synthesis and consistent object placement.

ence feature and, through cosine similarity and clustering,
decompose the associated 4D Gaussians for a specific in-
stance.

In Fig. 1, we demonstrate how context awareness can
be used to extract an object from one scene and place it
into another. Notably, the rendering of the edited scene is
not achieved by directly rasterizing the object’s correspond-
ing 4D Gaussian onto the previous image. Instead, the 4D
Gaussians are merged, allowing the object’s Gaussian to
deform in tandem with the temporal dynamics of the new
scene. As shown in Figure 1, the spatial relationships inher-
ent in the 4D Gaussians ensure that the newly added object
can be partially occluded by other vehicles in the scene.

In Fig. 2, we showcase how the newly added synthetic
4D object can be manipulated within the new scene. By
simultaneously rotating and translating the vehicle, the syn-
thetic 4D object can be positioned with various poses in dif-
ferent locations. In the attached video, we provide demon-
strations of these capabilities.

D. Novel view synthesis

Novel view synthesis involves rendering camera perspec-
tives that were not included in the training data. In au-
tonomous driving, this capability is essential for photoreal-
istic closed-loop simulations, particularly in validating end-
to-end autonomous driving systems. Current benchmarks
address this challenge primarily in two ways: (i) utiliz-
ing simulator engines like CARLA [3], and (i) leveraging
Bird’s Eye View (BEV) abstractions, as exemplified by the
method proposed in NAVSIM [2], which serves as a bench-
mark for the CVPR 2024 Autonomous Grand Challenge.
NAVSIM enables short closed-loop simulations built on the
nuPlan dataset [1]. However, achieving photorealistic novel
view synthesis remains a significant challenge.

This difficulty stems from the nature of real-world data
collected for autonomous driving, which is typically cap-
tured using cameras mounted on vehicles. Camera move-
ments are constrained by vehicle trajectories, often limited
to simple, linear paths or curves. These restrictions in the
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Figure 2. Manipulating synthetic 4D objects for scene editing by adjusting their poses and positions. This is achieved through translation

and rotation of the object’s Gaussian representations.

training data result in scene reconstructions that struggle to
meet the requirements for novel view synthesis.

In studies such as EmerNeRF [11], MARS [9], and
StreetGaussian [10], novel view synthesis is evaluated by
dividing a scene’s frames into training and test sets. For
instance, EmerNeRF designates every 10th frame as the
test set and the rest as the train set. While this benchmark
method provides ground truth for benchmarking, and we
adopt the same approach for quantitatively evaluating novel
view synthesis performance, it falls short in meeting the re-
quirements of closed-loop simulation, where novel views
must be generated under diverse ego poses and dynamic tra-
jectories.

Toward photorealistic closed-loop simulation, we show-
case the capabilities of CoDa-4DGS in Fig. 3. By making
slight adjustments to the ego camera’s angles in both pos-
itive and negative directions, CoDa-4DGS generates novel
views that do not exist in the dataset. Additionally, it sup-
ports novel view synthesis for 4D semantic segmentation,
offering a versatile tool for various scenarios. A detailed
demonstration of this capability is included in the attached
video.

E. Conceptual comparison

To incorporate the latest advancements, we compare our
method with S3Gaussian [4] and StreetGaussian [10]. Un-
like StreetGaussian, which requires ground truth for train-
ing, our approach is built upon 4DGS and S3Gaussian and
leverages self-supervised learning. While ground truth of-
fers precise tracking priors for dynamic objects in a scene,
the self-supervised approach enhances scalability by elimi-
nating the need for labeled bounding boxes.

Additionally, it is worth emphasizing that our method
can serve as a plug-and-play module to enhance other
frameworks based on Gaussian temporal deformation. As
demonstrated in Sec B, we focus on leveraging context
awareness and deformation awareness to compensate for
inaccuracies in vanilla Gaussian deformation predictions,
thereby improving overall performance. For instance, a re-
lated method, DN-4DGS [7], also serves as a plug-and-play
module and improves PSNR by 1.4% for vanilla 4DGS. In
comparison, our approach achieves an improvement of ap-
proximately 2%. Moreover, DN-4DGS is not explicitly de-
signed for autonomous driving scenes.

Using 2D foundation models to distill features has
proven effective in 3DGS tasks [12, 13], especially with se-
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Figure 3. Novel view synthesis by freezing the scene in time and altering the cameras’ perspective. The resulting views are synthetic
images that do not exist in the dataset and have never been observed before.

Table 2. Conceptual comparison of very recent advancements in GS-based scene rendering approaches.

Approach 4D Scene Autonomous  Self-Supervised Feature Plug-and-Play
Driving Distillation

Feature-3DGS [12] v v

FMGS [13] v v

StreetGaussian [10] v v

S3Gaussian [4] v v v

DN-4DGS [7] v v v

CoDa-4DGS (Ours) v v v v v

mantic information, which significantly aids scene under-
standing [5]. Semantic feature-supported 3DGS can enable
downstream tasks like scene editing in static scenarios. We
extend this idea to 4DGS, which is not straightforward and
involves additional complexity. In 4DGS, each Gaussian
undergoes temporal deformation, and the associated seman-
tic features must also be transformed accordingly to main-
tain consistency in context after deformation. For example,
if a Gaussian represents different objects at different time
steps, its semantic features should adapt to reflect the new

semantics, ensuring alignment between the rendered results
and the foundation model’s inferences. This consistency
is essential for enabling CoDa-4DGS to perform semantic-
aware applications, such as scene editor.

Furthermore, by incorporating semantic features as
context-awareness inputs into the Deformable Compensa-
tion Network (DCN), we can constrain Gaussian deforma-
tion in spatial dimensions, thereby improving training out-
comes. For instance, a Gaussian representing a road surface
at one time step should remain consistent as a road surface



after temporal deformation rather than erroneously trans-
forming into a car due to proximity in 3D space. This is be-
cause the semantic feature distance between the two would
be significantly larger despite their spatial proximity.

In Tab. 2, we summarize the above discussions, high-
lighting the key distinctions between our approach and
other very recent methods.

F. Efficiency improvement

Due to the increased feature dimensionality required by
CoDa-4DGS for supporting Gaussian deformation, its in-
ference speed is reduced compared to the vanilla 4DGS.
To improve efficiency and better accommodate potential
real-time applications, we conduct additional experiments
using mixed-precision computation and graph compila-
tion, achieving a 2.47x speedup. Specifically, on an
NVIDIA A100, the per-frame inference time is 0.037/0.038
seconds on the Waymo/KITTI datasets, corresponding to
27.02/26.45 FPS, respectively. On an NVIDIA RTX 3090,
the inference time increases to 0.078/0.079 seconds, corre-
sponding to 12.75/12.66 FPS. Furthermore, additional op-
timization strategies such as sparsification and quantization
hold promise for further improving the efficiency of CoDa-
4DGS.

G. Further visual results

To provide a more intuitive demonstration of CoDa-4DGS’s
performance on dynamic scenes, we present the RGB
rendering results, semantic feature rendering results, and
ground truth for each frame in chronological order. CoDa-
4DGS consistently achieves exceptional 4D scene render-
ing across diverse scenarios, as shown in Scene 86 (Fig.4),
Scene 80 (Fig.5), Scene 03 (Fig.6), and Scene 22 (Fig.7).
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Figure 4. 4D scene rendering for scene 86.
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Figure 5. 4D scene rendering for scene 8§0.
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Figure 6. 4D scene rendering for scene 03.
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Figure 7. 4D scene rendering for scene 22.
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