
Supplementary Material for Normal and Abnormal Pathology
Knowledge-Augmented Vision-Language Model for Anomaly Detection in

Pathology Images

1. Detailed Experimental Setup
1.1. Pathology term pools
We present the pathology terms that we collected and used
for lymph node metastasis detection in Tab. S1. The cu-
rated term pools consist of 92 normal terms and 48 abnor-
mal terms.

1.2. Implementation details of competing models
Seven competing models are involved in this study. For
GANomaly, STFPM, Fastflow, CFA, and EfficientAD, we
followed the implementation of anomalib [2]. Based on the
benchmark results, we selected the specific backbone archi-
tectures and implementation strategies. These models were
trained for 1 epoch and evaluated on an NVIDIA RTX 3090
GPU. Detailed implementations settings are as follows:
GANomaly. We set the batch size to 100 for training. Fol-
lowing the original work [1], we adopted Adam optimizer
with an initial learning rate of 0.0002 and momentum pa-
rameters β1 = 0.5, β2 = 0.999. The size of the autoencoder
latent vector was set to 100. The weights for the loss func-
tions were set to wbce = 1, wrec = 50, and wenc = 1.
STFPM. The batch size was set to 100 for training. For
the remaining settings, we followed the optimized config-
urations from the original work [9], utilizing the first three
blocks of ResNet18 [4] as the feature extractor and Stochas-
tic Gradient Descent optimizer with a learning rate of 0.4.
Fastflow. We set the batch size to 50 for training due to
computational limitations. Following the optimized con-
figurations provided in the original work [11], we set all
other settings based on WideResNet50 [12]: Adam opti-
mizer with a learning rate of 0.001 and weight decay of
0.00001, and 8-step flows.
CFA. We set the batch size to 50 for training because of
computational limitations. For other settings, we followed
the optimized configurations provided in the CFA [5] paper,
based on the WideResNet50 [12] feature extractor: AdamW
optimizer applied with amsgrad, a learning rate of 0.001 and
weight decay of 0.0005, the number of nearest neighbors for
each patch feature to 3, and γc and γd to 1.
EfficientAD. Following the original work [3], we adopted

EfficientAD-S and utilized Adam optimizer with a learning
rate of 0.0001 and a weight decay of 0.00001, a batch size
of 1, and 384 convolution output channels.

The remaining two models (AnoDDPM and Anomaly-
CLIP) are implemented as follows:

AnoDDPM. [10] We used the official implementation
of AnoDDPM and adopted the training settings of
AnoDDPM-PNDM [6]. Specifically, we employed 100
timesteps t ∈ [10, 20, 30, ..., 990, 1000], each representing
a specific noise level in the denoising process, using the
PNDM sampler [7]. The model was trained using Adam
optimizer with a batch size of 28 for 1 million iterations
(approximately 20 epochs). The optimal model was se-
lected based on a signal-to-noise ratio (SNR) of 0.1, which
showed the best performance on Camelyon16 as reported
in [6]. Evaluation was conducted on an NVIDIA RTX
A6000 GPU.

AnomalyCLIP. [13] We employed the official implementa-
tion of AnomalyCLIP with CLIP(ViT-L/14) [8] as the back-
bone. The model was trained for one epoch with a batch size
of 64. To tailor the approach to lymph node detection, the
prompt learner was initialized with the class name ”lymph
node tissue”. For the remaining settings, we followed the
optimized configurations outlined in [13]. Specifically, we
adopted Adam optimizer with a learning rate of 0.001. The
number of learnable text prompts was set to 12. Trainable
text tokens were attached to the first 9 layers of the text en-
coder. Each text token had a length of 4.

1.3. Computational efficiency evaluation

Latency and peak GPU memory usage were measured
with a batch size of 28, and dummy iterations were per-
formed beforehand to stabilize execution. GPU synchro-
nization using torch.cuda.synchronize was ap-
plied before and after the inference to ensure accurate
timing. Peak GPU memory usage was tracked with
torch.cuda.max memory reserved, which records
the highest reserved memory during inference.
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Normal terms 36. Macrophages 72. Prominent single nucleoli 13. Microacinar architecture along its
advancing edge

1. Helper T lymphocyte 37. Plasmacytoid lymphocytes 73. Efferent vessels 14. Tumor budding

2. Small dormant lymphocytes 38. Capillaries 74. Secondary lymphoid follicles
15. Large apocrine-like pleomorphic
cells with large nuclei and prominent
nucleoli

3. Large B lymphocytes 39. Plasmablasts 75. Primary follicle 16. Discohesive cells

4. Littoral cells 40. Distinct cytoplasmic boundaries 76. Frequent mitotic figures 17. Isolated or small clusters of malig-
nant cells in the stroma

5. Large and small cleaved follicular
center cells scant cytoplasm and Incon-
spicuous nucleoli

41. Follicle 77. Mature T cells 18. Glands with cells that have nuclear
pseudostratification

6. Sclerosis in an inguinal lymph node 42. Histiocytes 78. Trabeculae 19. Cuboidal cells with eosinophilic
cytoplasm and central nucleus

7. Sinuses 43. Small B and T lymphocytes 79. B cells 20. Thickened capsule

8. Marginal zone 44. Tightly packed anastomosing net-
works 80. Memory B cells

21. Central lumenal spaces of some
small glands are filled by tumor cells
producing small solid areas

9. Large B cells scattered throughout
the paracortex 45. Recirculating cells 81. Arterioles 22. Caseous necrosis

10. Germinal center
46. Abundant cytoplasm with medium
to large nuclei with vesicular chro-
matin

82. Cells are elongated and resemble
fibroblasts 23. Sinusoidal permeation

11. Squamous endothelium 47. Paracortex 83. Coarse network of reticulin fibers 24. Microacinar structures

12. Interdigitating dendritic cells 48. Faintly granular cytoplasm 84. Postfollicular memory B cells
25. Medium to small glands have
an internal structure formed by mi-
croacini

13. Histiocytes and high endothelial
venules

49. Distinct group of non T and non B
lymphocytes 85. Lymphatic vessels 26. Epithelioid cell clusters

14. Lymphocytes 50. Subcapsular sinus 86. T lymphocytes 27. Glandular arrangement
15. Large round nuclei 51. Afferent lymph vessels 87. T cells 28. Sinus involvement

16. Circulatory monocytes 52. Capsule 88. Plasmacytoid dendritic cells 29. Small solid clusters or buds of tu-
mor cells

17. Lymphatic artery 53. Trabecular sinuses 89. Cortex 30. Irregularly folded, distorted, and
small tubules

18. Discontinuous endothelium 54. Open chromatin 90. B-cell-rich non-Germinal center 31. Comedo, trabecular and papillary
patterns

19. Smooth muscle 55. B immunoblasts 91. Helper T cells 32. Advancing edge of the adenocarci-
nomas

20. Small unchallenged B cells 56. Follicles 92. Medulla 33. Single and small clusters of undif-
ferentiated cells are admixed

21. Medullary sinuses 57. Tingible body macrophages 34. May expand sinuses

22. Basophilic cytoplasm 58. Smooth muscle proliferation in
lymph node hilum

35. Glandular structure is completely
or almost completely lost

23. Erythrocytes 59. Large pale nuclei Abnormal terms 36. Paracortical expansion

24. Centrocytes 60. Plasma cells 1. Tumor buds that emerge from
medium-sized tubules

37. Cells grow predominantly in solid
masses or cords

25. Tingible body macrophages con-
tain apoptotic bodies 61. Straight branches 2. Completely destroyed sinus archi-

tecture

38. Glands acquire a haphazard ar-
rangement with marked variation in
size, shape, and outline

26. Endothelial cell 62. Blood vessel 3. Cells are discontinuous from the
more superficial malignant glands 39. Cytokeratin

27. Peripheral nucleoli 63. Medullary cords, sinuses and ves-
sel

4. Small isolated round tubules within
the stroma

40. Complex, irregular, cribriform
glands and small solid areas

28. Cortical sinus 64. Abundant basophilic cytoplasm 5. Balloon cell variant resembles histi-
ocytes although nuclei are atypical 41. Apoptosis

29. Mantle zone 65. Primary follicles 6. Partially destroyed sinus architec-
ture

42. Large apocrine-like pleomorphic
cells with pink, granular cytoplasm

30. Follicular dendritic cells 66. Intranodal vessels 7. Cytoplasmic mucin 43. Glands are loosely and irregularly
arranged

31. Plasma cell-rich Germinal center 67. Lymphoid nodules
8. Small tubules that formed cribri-
form structures within medium or large
gland

44. Complex or simple tubules with a
compact glandular structure

32. Large noncleaved follicular center
cells 68. Centroblasts 9. Undifferentiated cells 45. Grade 3 adenocarcinoma

33. Immunoblasts 69. Quiescent B cells 10. Diffuse growth pattern 46. Glands are lined by 3 or more lay-
ers

34. Mast cells 70. Thin connective tissue capsule 11. Glands are small, round, and mi-
croacinar

47. Large, highly irregular glands that
frequently have outpouchings and mi-
croacinar forms

35. Dense connective tissue 71. Tingible body macrophages have
clear cytoplasm 12. Nodular growth pattern 48. Acini are lined by 2 or 3 layers of

cells with basally oriented nuclei

Table S1. Pathology terms in the curated term pools.



Method CONCH-class CONCH-pool CONCH(vI ) Ano-NAViLa
G

as
tr

ic
L

N

AUROC
(Amax

score)
0.9068

[0.85, 0.96]
0.7619

[0.67, 0.85]
0.9902

[0.97, 1.00]
0.9967

[0.99, 1.00]

AUPR
(Amax

score)
0.8987

[0.81, 0.96]
0.6902

[0.57, 0.82]
0.9922

[0.98, 1.00]
0.9971

[0.99, 1.00]

AUROC
(Atop1%

score)
0.8896

[0.82, 0.95]
0.7166

[0.61, 0.81]
0.9828

[0.96, 1.00]
0.9894

[0.97, 1.00]

AUPR
(Atop1%

score)
0.8607

[0.74, 0.95]
0.6107

[0.49, 0.76]
0.9844

[0.96, 1.00]
0.9904

[0.98, 1.00]

Patch
(AUROC)

0.8942
[0.89, 0.90]

0.8300
[0.83, 0.83]

0.9651
[0.96, 0.97]

0.9681
[0.97, 0.97]

C
am

el
yo

n1
6

AUROC
(Amax

score)
0.7459

[0.66, 0.83]
0.5805

[0.48, 0.68]
0.7857

[0.70, 0.86]
0.8594

[0.79, 0.92]

AUPR
(Amax

score)
0.6762

[0.54, 0.80]
0.4257

[0.32, 0.57]
0.6844

[0.54, 0.80]
0.8309

[0.73, 0.91]

AUROC
(Atop1%

score)
0.7681

[0.67, 0.85]
0.5135

[0.41, 0.61]
0.7898

[0.70, 0.87]
0.7702

[0.67, 0.86]

AUPR
(Atop1%

score)
0.7338

[0.61, 0.84]
0.3837

[0.28, 0.50]
0.7569

[0.64, 0.85]
0.7941

[0.69, 0.87]

C
am

el
yo

n1
6 m

ac
ro

AUROC
(Amax

score)
0.8358

[0.74, 0.92]
0.6338

[0.49, 0.77]
0.8940

[0.82, 0.95]
0.9858

[0.96, 1.00]

AUPR
(Amax

score)
0.6255

[0.39, 0.81]
0.3114

[0.18, 0.51]
0.6931

[0.47, 0.86]
0.9547

[0.88, 1.00]

AUROC
(Atop1%

score)
0.9000

[0.80, 0.97]
0.5051

[0.37, 0.64]
0.9557

[0.90, 0.99]
0.9761

[0.92, 1.00]

AUPR
(Atop1%

score)
0.7821

[0.59, 0.91]
0.2256

[0.13, 0.36]
0.8847

[0.74, 0.98]
0.9699

[0.89, 1.00]

Table S2. AD performance compared to the VLM baseline.

2. Additional Experiments and Analyses
2.1. AD performance of baseline VLM
To compare Ano-NAViLa and the zero-shot performance
of the VLM, we employed CONCH in its original form to
conduct AD using the text prompt "an image showing
KEYWORD" by replacing KEYWORD with 1) CONCH-class:
either normal or metastasis lymph node, and 2) CONCH-
pool: each of normal and abnormal terms in the pool.
Both variants obtained substantially lower performance
than Ano-NAViLa (Tab. S2). These results suggest that
while the performance gain can be partially attributed to
the use of CONCH, the strong performance, particularly on
Camelyon16, is largely due to the proposed text-augmented
embeddings.

2.2. AD performance without erosion operation
We repeated the experiments without the 3x3 erosion op-
eration. The result are illustrated in Tab. S3. The per-
formance of Ano-NAViLa were less sensitive to the ero-
sion operation than other competing models. Ano-NAViLa
outperformed others for all metrics except AUROC using
Atop1%

score on Camelyon16. For this metric, CFA achieved
the best performance, followed by STFPM. Ano-NAViLa
ranked third with an AUROC of 0.8092. Nevertheless,
Ano-NAViLa obtained a higher AUROC of 0.8543 using
Amax

score, surpassing CFA, which achieved 0.8176 AUROC
using Atop1%

score.

2.3. Anomaly localization
In Fig. S1, we provide additional heatmap visualizations
of WSI-level AD results from abnormal WSIs in Came-

lyon16. The visualizations include heatmaps from the
ground truth, Ano-NAViLa, and STFPM, achieving the
second-best performance in AD and localization.

2.4. Distribution of image-text similarities
Fig. S2 and Fig. S3 show the distribution of image-text
similarities in the normal and abnormal term pool, respec-
tively. The numbers on the x-axis correspond to the in-
dices of the pathology terms in Tab. S1. For (a) and (b)
in both Fig. S2 and Fig. S3, we calculated the similarity
scores of the normal or abnormal-labeled patches of each
dataset and the pathology terms in each pool. For (c) and
(d), we analyzed the representative patches (the patches
with the highest anomaly scores in the WSIs) of normal
or abnormal WSIs in each dataset. We averaged the sim-
ilarity scores by dataset and label, and then visualized the
distributions. The results reveal clear differences in sim-
ilarity distributions between normal and abnormal images
when combined with the normal and abnormal term pools,
indicating strong discriminative alignment between image
features and pathology-specific textual descriptions.
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Figure S1. Visualization of anomaly localization in abnormal WSIs from Camelyon16.



Method GastricLN (WSI) Patch Camelyon16 Camelyon16macro

AUROC
(Amax

score)
AUPR

(Amax
score)

AUROC
(Atop1%

score)
AUPR

(Atop1%
score)

AUROC
AUROC
(Amax

score)
AUPR

(Amax
score)

AUROC
(Atop1%

score)
AUPR

(Atop1%
score)

AUROC
(Amax

score)
AUPR

(Amax
score)

AUROC
(Atop1%

score)
AUPR

(Atop1%
score)

GANomaly 0.4153
[0.31, 0.52]

0.4769
[0.36, 0.61]

0.3143
[0.22, 0.42]

0.4129
[0.31, 0.52]

0.4182
[0.42, 0.42]

0.5717
[0.47, 0.67]

0.4962
[0.35, 0.63]

0.5827
[0.48, 0.68]

0.4713
[0.34, 0.61]

0.6193
[0.48, 0.75]

0.3535
[0.18, 0.54]

0.6091
[0.48, 0.73]

0.3348
[0.18, 0.52]

STFPM 0.9410
[0.88, 0.99]

0.8855
[0.78, 0.98]

0.9940
[0.98, 1.00]

0.9926
[0.98, 1.00]

0.9538
[0.95, 0.96]

0.7398
[0.65, 0.82]

0.5568
[0.43, 0.72]

0.7954
[0.71, 0.88]

0.6914
[0.55, 0.85]

0.7665
[0.67, 0.85]

0.3544
[0.22, 0.57]

0.8250
[0.71, 0.92]

0.5584
[0.35, 0.82]

FastFlow 0.9525
[0.90, 0.99]

0.9175
[0.81, 0.99]

0.9758
[0.94, 1.00]

0.9320
[0.82, 1.00]

0.9242
[0.92, 0.93]

0.7814
[0.70, 0.86]

0.6628
[0.51, 0.80]

0.8120
[0.73, 0.89]

0.7371
[0.61, 0.85]

0.8472
[0.75, 0.93]

0.5980
[0.38, 0.81]

0.8676
[0.76, 0.95]

0.7014
[0.48, 0.89]

CFA 0.9598
[0.91, 1.00]

0.8898
[0.77, 1.00]

0.9828
[0.94, 1.00]

0.9274
[0.82, 1.00]

0.8881
[0.89, 0.89]

0.8306
[0.75, 0.91]

0.7667
[0.64, 0.87]

0.8176
[0.73, 0.89]

0.7774
[0.66, 0.87]

0.9034
[0.81, 0.97]

0.7603
[0.56, 0.91]

0.8898
[0.78, 0.97]

0.7915
[0.62, 0.92]

AnoDDPM 0.7816
[0.69, 0.86]

0.7200
[0.60, 0.85]

0.8454
[0.77, 0.91]

0.8415
[0.75, 0.92]

0.8860
[0.88, 0.89]

0.5311
[0.37, 0.67]

0.5573
[0.23, 0.59]

0.4990
[0.33, 0.65]

0.5107
[0.18, 0.53]

0.6869
[0.54, 0.83]

0.5934
[0.41, 0.77]

0.7034
[0.55, 0.83]

0.5640
[0.36, 0.76]

EfficientAD 0.8584
[0.78, 0.93]

0.7823
[0.65, 0.90]

0.8590
[0.78, 0.94]

0.7441
[0.62, 0.89]

0.8432
[0.84, 0.85]

0.6342
[0.54, 0.73]

0.5312
[0.39, 0.66]

0.6224
[0.52, 0.72]

0.5243
[0.39, 0.65]

0.6528
[0.53, 0.77]

0.2939
[0.17, 0.49]

0.6193
[0.49, 0.74]

0.3150
[0.17, 0.49]

AnomalyCLIP 0.3959
[0.30, 0.50]

0.4086
[0.32, 0.52]

0.2241
[0.14, 0.31]

0.3494
[0.27, 0.45]

0.3314
[0.33, 0.33]

0.6217
[0.52, 0.72]

0.5216
[0.39, 0.66]

0.5796
[0.48, 0.68]

0.4817
[0.34, 0.61]

0.6500
[0.53, 0.76]

0.3575
[0.19, 0.54]

0.5750
[0.44, 0.71]

0.3027
[0.16, 0.48]

Ano-NAViLa 0.9994
[1.00, 1.00]

0.9994
[1.00, 1.00]

0.9976
[0.99, 1.00]

0.9978
[0.99, 1.00]

0.9681
[0.97, 0.97]

0.8543
[0.78, 0.92]

0.8413
[0.75, 0.91]

0.8092
[0.72, 0.90]

0.8383
[0.75, 0.91]

0.9977
[0.99, 1.00]

0.9923
[0.97, 1.00]

1.0000
[1.00, 1.00]

1.0000
[1.00, 1.00]

Table S3. AD performance without the erosion operation on GastricLN and Camelyon16 datasets.

Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning
transferable visual models from natural language supervi-
sion. In International conference on machine learning, pages
8748–8763. PMLR, 2021. 1

[9] Guodong Wang, Shumin Han, Errui Ding, and Di Huang.
Student-teacher feature pyramid matching for anomaly de-
tection. The British Machine Vision Conference (BMVC),
2021. 1

[10] Julian Wyatt, Adam Leach, Sebastian M. Schmon, and
Chris G. Willcocks. Anoddpm: Anomaly detection with de-
noising diffusion probabilistic models using simplex noise.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) Workshops, pages
650–656, 2022. 1

[11] Jiawei Yu, Ye Zheng, Xiang Wang, Wei Li, Yushuang Wu,
Rui Zhao, and Liwei Wu. Fastflow: Unsupervised anomaly
detection and localization via 2d normalizing flows. arXiv
preprint arXiv:2111.07677, 2021. 1

[12] Sergey Zagoruyko and Nikos Komodakis. Wide residual net-
works. CoRR, abs/1605.07146, 2016. 1

[13] Qihang Zhou, Guansong Pang, Yu Tian, Shibo He, and Jim-
ing Chen. Anomalyclip: Object-agnostic prompt learning for
zero-shot anomaly detection. In The Twelfth International
Conference on Learning Representations, 2023. 1



Figure S2. Distribution of image-text similarities in the normal term pool. For both GastricLN and Camelyon16 datasets, (a) and (b) are
patch-level analysis results, and (c) and (d) are WSI-level analysis results.



Figure S3. Distribution of image-text similarities in the abnormal term pool. For both GastricLN and Camelyon16 datasets, (a) and (b) are
patch-level analysis results, and (c) and (d) are WSI-level analysis results.
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