
Supplementary Material for
OCK: Unsupervised Dynamic Video Prediction with Object-Centric Kinematics

1. Dataset details

We evaluate all methods on synthetic and real-world
datasets to establish a robust framework for assessing model
performance in dynamic video prediction. Emphasiz-
ing multi-object interactions within complex scenes, these
datasets have been meticulously selected to challenge the
model across a spectrum of tasks, ranging from fundamen-
tal geometric object tracking to the interpretation of com-
plex interactions under dynamic conditions.
OBJ3D [6] comprises 2920 training and 200 testing se-
quences featuring rigid objects in synthetic scenes with neu-
tral grey backgrounds. The dataset simulates dynamic en-
vironments by animating objects with distinct shapes, tex-
tures, and attributes. Each frame is accompanied by its cor-
responding object-centric annotations, including 3D spatial
orientation, geometric properties, and semantic classifica-
tions. The simplicity of the scenes facilitates a focused
assessment of the model’s geometric comprehension and
multi-object motion tracking capabilities.
MOVi-A [4] comprises 9703 training and 250 testing se-
quences, offering a diverse range of visual content. This
dataset simulates basic object interactions within a sim-
ple visual environment, incorporating variations in lighting
conditions, occlusions, and object appearances. Each scene
consists of 3 to 10 randomly positioned objects on a grey
floor, captured by a stationary camera oriented towards a
fixed origin point.
MOVi-B extends the MOVi-A dataset by incorporating
eight additional object shapes and introducing varied back-
ground colors. It features dynamic camera placement, with
the viewpoint directed towards the scene center and ex-
hibiting diverse scale variations across the dataset. The
MOVi-B dataset is designed to highlight more complex ob-
ject motions, interactions, and a broader diversity of object
shapes and colors compared to MOVi-A. As such, MOVi-
B is specifically designed to evaluate the model’s advanced
tracking capabilities and its comprehension of intricate ob-
ject dynamics in varied visual contexts.
MOVi-C features authentic video sequences of moving
objects against diverse backgrounds, incorporating varied
lighting conditions and contextual arrangements. This
dataset contains genuine objects sourced from the Google

Scanned Objects (GSO) dataset [2]. For each video, the
background and ground surface are randomly generated us-
ing Poly Haven. MOVi-C is specifically designed to evalu-
ate model performance under complex, real-world-like sce-
narios, presenting a substantially more challenging task due
to its intricate object and background compositions.

MOVi-D increases scene complexity by incorporating 10 to
20 static objects and 1 to 3 dynamic objects per scene, with
most objects initially positioned on the floor. This dataset
is designed to evaluate the model’s proficiency in handling
stationary objects frequently occluded by a few dynamic ob-
jects. By simulating real-world scenarios where objects of
interest are not isolated but are rather surrounded by numer-
ous distractors, MOVi-D enables a thorough evaluation of
the model to distinguish and track objects amidst complex,
cluttered environments. This configuration closely mimics
real-world scenarios, providing a robust benchmark for as-
sessing advanced object tracking capabilities.

MOVi-E further extends the complexity from MOVi-D by
introducing linear camera movement at a constant velocity,
while maintaining focus towards the center of the scene.
This dataset preserves the continuity of MOVi-D in terms
of the number of objects and their specifications. Among
the variations of the MOVi datasets, MOVi-E is the most
challenging due to the simultaneous motion of both view-
points and objects. This configuration provides the most
rigorous evaluation for handling complex interactions in dy-
namic environments, closely approximating real-world sce-
narios. Consequently, MOVi-E serves as an optimal bench-
mark for assessing advanced model capabilities in object
tracking, scene understanding, and motion prediction.

Waymo Open Dataset [8] requires specific preprocessing
to align with object-centric model training schemes. Specif-
ically, we utilize the perception version of the dataset, where
images are extracted from camera image converted from
byte to PNG, cropped, and resized to [64 × 64]. Image
masks from the vehicle asset label set are processed in a
similar manner. Bounding boxes and center coordinates are
extracted from camera box in (x,y) format. We assess per-
formance quantitatively by benchmarking against ground-
truth bounding boxes following Elsayed et al. [3].
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Sample Frame Textured
Objects

Moving
Objects

Moving
Camera Natural Type

OBJ3D No Yes No No Synthetic

MOVi-A No Yes No No Synthetic

MOVi-B No Yes No No Synthetic

MOVi-C Yes Yes Yes No Synthetic

MOVi-D Yes Yes Yes No Synthetic

MOVi-E Yes Yes Yes Yes Synthetic

Waymo
Open

Dataset
Yes Yes Yes Yes Real

Table 1. Overview of datasets comparing attributes such as object texture, motion, camera movement, and natural settings.
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OBJ3D MOVi-A MOVi-B MOVi-C MOVi-D MOVi-E Waymo

Slot Number of slots 6 11 11 26 26 26 18
Encoder Slot size 128 128 128 128 128 128 128

Resolution [64,64] [64,64] [64,64] [64,64] [64,64] [64,64] [64,64]
Batch size 16 16 16 16 16 16 16
Epochs 1200 1500 1500 1500 1500 1500 1000
Warmup steps 1500 2500 2500 2500 2500 2500 2000
Iterations 1 2 2 3 3 3 2

Kinematics Kins. size 6 11 11 26 26 26 16
Encoder Resolution [64,64] [64,64] [64,64] [64,64] [64,64] [64,64] [64,64]

Heads 4 4 4 4 4 4 4
Acceleration δA 0.01 0.01 0.01 0.01 0.01 0.01 0.05
Trans. layers 2 2 2 2 2 2 2
Embedding dim 128 128 128 128 128 128 128
Hidden dim 256 256 256 256 256 256 256

Transformer Input frame 5 6 6 6 6 6 6
Predicted frame 5 8 8 8 8 8 8
Epochs 1500 1500 1500 2500 2500 2500 1500
Batch size 16 16 16 8 8 8 16
Learning rate 1e−4 2e−4 2e−4 2e−4 2e−4 2e−4 1e−4

Trans. layers 2 4 4 4 4 4 4
Heads 4 8 8 8 8 8 4
Embedding size 128 256 256 256 256 256 256
Loss weight α 1 1 1 1 1 1 1

Table 2. List of hyperparameters for the encoders and the transformer modules across six synthetic datasets and one real-world dataset.
“Kins” refers to the kinematics encoder and “trans” refers to the transformer.

2. Experimental details

The base object-centric model comprises 400K to 900K pa-
rameters, and our model averages approximately 4M pa-
rameters. These models can be trained on a single machine
equipped with one RTX 3090 GPU, or scaled up to six
GPUs for accelerated training. The autoregressive object-
centric transformers require approximately 100 hours on a
single GPU. Table 2 delineates the specific hyperparameter
configurations of the OCK module.

3. Implementation details

3.1. Slot Attention for Video

Slot Attention for Video (SAVi) [5] is an encoder-decoder
video model based on Slot Attention [7], which utilizes op-
tical flow as a prediction target to derive object-centric rep-
resentations of dynamic scenes. The model relies on motion
flow prediction as its primary training signal, which limits
its applicability to scenarios where all objects in a scene
exhibit independent motion. Consequently, SAVi encoun-
ters challenges when generalizing to scenes with a moving

camera, despite the optical flow field containing informa-
tion about the static scene geometry in such instances. This
limitation is the main reason why the autoregressive object-
centric transformer modules for dynamic video prediction
do not perform well in complex environments.

3.2. Object Kinematics
Recall that Object Kinematics encompasses the position,
velocity, and acceleration states, represented via the cen-
ter coordinates [x, y] of object features. The total number
of Object Kinematics corresponds directly to the number of
slots extracted per video frame. The process begins with
the initialization of slots using learnable queries, followed
by iterative slot updates to generate a sequence of future
slots.

3.2.1. Analytical approach
The analytical approach leverages the temporal subsequent
kinematics of future frames as guidance by forecasting the
subsequent kinematics based on input frames via logical
reasoning and concatenating the prediction results with the
current kinematics information as follows:
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xpos′

t+1 = xpos
t + xvel

t × δT + xaccel
t × δA, (1)

where δt is the time difference between two consecutive
timesteps and δA is a parameter that controls the kinematics
information. The corresponding velocity and acceleration
states at that timestep are calculated accordingly. As the ac-
celeration state is insignificant to the overall position state
computation, we ignore it during training.

The analytical approach is particularly effective for sev-
eral reasons. First, it maintains temporal continuity by sim-
ulating the natural flow of objects through space, rather than
relying on abrupt changes. Second, it enhances efficiency
by focusing on the movement of key objects, rather than
analyzing every pixel in video frames. Lastly, the approach
prioritizes accuracy by incorporating both the current state
and the predicted state, allowing for adjustments in predic-
tions when objects change in motion or direction.

3.2.2. Empirical approach
The empirical approach exclusively utilizes observed mo-
tion properties of objects within the current frame. This
methodology assesses transformers’ capability to learn ob-
ject motion dynamics in video sequences, with limitations
in generalizing to extended temporal sequences. Conse-
quently, this approach serves as a baseline for evaluating the
analytical method’s performance, offering a frame-specific
benchmark for comparison.

3.3. OCK transformers
Following the design principles of BERT [1], we construct
our transformer by stacking multiple transformer encoder
blocks. Our framework utilizes Adam optimizer with a
batch size of 16. The initial learning rate is set to 0.0001
for OBJ3D, 0.0002 for MOVi, and 0.0001 for Waymo Open
Dataset, which decays according to a cosine schedule until
reaching 0. We incorporate a linear learning rate warmup
strategy during the initial 5% of training steps to facilitate
smoother convergence. Throughout the training phase, we
do not apply gradient clipping or weight decay, maintaining
the simplicity and efficiency of our framework.

3.3.1. Joint-OCK
Initially, we concatenate object slots and the Object Kine-
matics, then linearly project the input sequence of object
attributes to a latent space to match the inner dimensional-
ity of the transformer mechanism as Ut = Linear([St,Kt]).
We then add positional encoding to the latent object em-
bedding space. In this way, at each timestep, object slots
receive the same positional encoding.

3.3.2. Cross-OCK
This approach follows Joint-OCK to some extent, but the
input to the transformers requires additional calculations.

The details of the processing are omitted as they are already
explained clearly in the method section of the main paper.

3.4. Model training
To construct the OCK transformer modules, we utilize a
standard Transformer encoder T with NT layers. The in-
put sequence of slots is first linearly projected into a latent
space Ut of dimension Ds, ensuring compatibility with T .
Then, positional encodings are added to the latent embed-
dings to encode the temporal order of the input slots. In-
stead of assigning sinusoidal positional encodings indepen-
dently to each slot regardless of its timestep, following Wu
et al. [9], we apply positional encoding Pt ∈ RN×Ds at the
temporal level across all N slots at timestep t, to ensure that
all slots at the same timestep share identical positional en-
codings. In this way, our module maintains permutation
equivariance among slots, which is a critical property of
object-centric video prediction. Mathematically, the input
to the transformer V ∈ R(TN)×Ds is as follows:

Z = [U1, U2, U3, ..., UT ] + [P1, P2, P3, ..., PT ]. (2)

This temporal encoding strategy improves prediction
performance while maintaining efficiency [9]. The trans-
former T processes the input sequence of slots Z to model
temporal object scene dynamics, generating output features
W . We then take the last N features WT ∈ RN×Ds and
apply a linear transformation to obtain the subsequent set of
slots at timestep T + 1 as follows:

W = T (Z) ŜT+1 = Linear(WT ). (3)

For future predictions, ŜT+1 is treated as ground truth
and combined with prior slots {St}Tt=2. This iterative pro-
cess enables the autoregressive generation of future video
frames over any desired horizon, H > 0.

4. Additional qualitative results
In this section, we provide more qualitative results to com-
plement our quantitative findings as follows:
• Video prediction on MOVi dataset in Fig. 1
• Kinematic trajectories of MOVi dataset in Fig. 2.
• Video prediction on Waymo Open dataset in Fig. 3.
• Scene decomposition on MOVi datasets in Figs. 4 and 5.
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Figure 1. Additional qualitative results on MOVi-A dataset. The objects that all models have failed to detect or track in common have been
neglected. 1: Wrong dynamics, 2: Missing object(s) when compared to other models, 3: Blurry object(s).
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Time
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Figure 2. Additional qualitative results on predicted kinematics trajectory on MOVi-B dataset.
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Figure 3. Additional qualitative results on Waymo Open Dataset.
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Figure 4. Per-slot decomposition results of MOVi-A dataset on Cross-OCK. We visualize the reconstruction of individual object slots based
on the input predicted scene (Pred.), where Slot 5 denotes the background slot.

Figure 5. Per-slot decomposition results of MOVi-B datåset on Cross-OCK. Slot 5 denotes the background slot.
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