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In this supplementary material, additional items are provided as follows:
• Detailed description of data augmentation tricks.
• Additional implementation details and default prompts.
• Applications on real image dataset (landscape).
• Discussion on the aim of the proposed methods.
• Additional qualitative results and blurriness visualization.

1. Data Augmentation

Algorithm 1 Obtaining coordinates of random patches
Input: image size H,W , window size K
Parameter: variation of window q ≤ 1, spare pixel u
Output: size k, coordinates x, y

1: Random window length, k← randint(qK, K).
2: Erased height rh ← rH

2 .
3: Erased width rw ← rW

2 .
4: Height spare pixels, uh ← u if rh ≥ k else 0.
5: Width spare pixels, uw ← u if rw ≥ k else 0.
6: Random direction flag d ∈ {up, down, left, right}.
7: if d == up then
8: y← randint(max(0, rh − k) + uh, rh − uh).
9: x← randint(max(0, rw − k) + uw, W −max(rw, k)− uw).

10: else if d == down then
11: y← randint(H − (rh + k) + uh, H −max(rh, k)− uh).
12: x← randint(max(0, rw − k) + uw,W −max(rw, k)− uw).
13: else if d == left then
14: y← randint(max(0, rh − k) + uh, H −max(rh, k)− uh).
15: x← randint(max(0, rw − k) + uw, rw − uw).
16: else if d == right then
17: y← randint(max(0, rh − k) + uh, H −max(rh, k)− uh).
18: x← randint(W − (rw + k) + uw,W −max(rw, k)− uw).
19: end if
20: return k, x, y

In this section, we describe the detailed techniques for training data augmentation in the training strategies section of the
main paper. For the given image Ie ∈ RH×W×3 in Figure 6 of the main paper, we first erase inner area of the original by rH
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in height and rW
2 in width. The deletion ratio r, variation parameter q, and spare pixels u are hyperparameters that determine

how much of the original image is reduced, the crop size, and the extent of overlap with known pixels, respectively. They
influence the difficulty of training; we set them to 0.5, 0.9, and 4, respectively. After that, we randomly attach some patches
to the reduced image IC to simulate an arbitrary intermediate step image Ieτ at τ . The top-left coordinates of each random
patch can be obtained using the Algorithm 1. Specifically, under the Figure 7-(a) scenario in the main paper, the final IC and

Algorithm 2 Random Attachments on IC
Input: given image Ie, initial IC , K
Parameter: maximum attaching numbers N , escape ratio e
Output: final IC , Mglobal

1: Random attaching number n← randint(0, N).
2: i← 0.
3: Ie ∈ RH×W×3.
4: Mglobal ∈ RH×W ← 1.
5: while i < range(n) do
6: k, x, y ← Algorithm 1(H,W,K).
7: IC [y : y + k, x : x+ k]← Ie[y : y + k, x : x+ k].
8: Mglobal[y : y + k, x : x+ k]← 0.
9: if mean(Mglobal) ≤ e then

10: break.
11: end if
12: end while
13: return final IC , Mglobal

the corresponding mask Mglobal are obtained by applying the random attachments as described in Algorithm 2. K is 512
in the frozen stable diffusion (SD) inpainting model. N and e are a maximum number of attachments and an escape ratio,
and we set N = 32 and e = 0.15, respectively. During Algorithm 2, the attachment process can result in an overabundance
of known pixels, leaving insufficient region for outpainting. To address this case, e is introduced as a termination criterion
for Algorithm 2. This ensures that the process halts before attempting to fulfill the random attaching number n. Consequently,
they are also hyperparameters that determine the training difficulty. After Algorithm 2, the position of the local window needs

Algorithm 3 Positioning of the local window
Input: final IC , Mglobal, K
Parameter: termination parameter d
Output: top-left coordinates of local window lx, ly

1: IC ∈ RH×W×3.
2: while True do
3: lx ← randint(0,W −K).
4: ly ← randint(0, H −K).
5: M ←Mglobal[ly : ly +K, lx : lx +K].
6: if mean(M) > d then

break.
7: end if
8: end while
9: return lx, ly

to be selected within the final image IC and Mglobal to acquire I,M , and MC . Thus, Algorithm 3 is utilized to obtain the top-
left coordinates lx and ly , which indicate the positions of MC , I , and M . d is a decision parameter that terminates Algorithm 3
if the white portion (generation area) of M exceeds this parameter, and we set it to 0.05. The purpose of d is to prevent cases
where the position is determined in such a way that there are no regions left to be generated during the augmentation process.



Figure 1. An overall workflow of data augmentation.

Figure 2. Visualization of augmented images across different τ values. Without the proposed augmentation method, the progressive
outpainting models are exposed to τ = 0 data during training.

The overall workflow corresponding to Algorithm 2 and Algorithm 3 is illustrated in Figure 1. As Illustrated in Figure 2, the
proposed augmentation method prevents the model from being exposed solely to τ = 0 during training, thereby mitigating
overfitting of CPMs. To this end, we randomly sample an n to simulate various τ steps as described in Algorithm 2.

2. Additional Implementation Details
In this section, we describe the local condition cL and compare the total number of parameters required for inference. In
progressive outpainting, the global condition cG obtained from pre-trained model like BLIP [9] is unsuitable for input into
the frozen SD branch, which handles localized generation. Instead, cL is supplied for the SD branch. We empirically select
keywords that can be used broadly in terms of qualitative aspects.
Default Prompts we use “harmonized painting, high resolution, best quality, high quality, harmonized simple background”
as a default local condition cL. In addition, a negative prompt can be utilized for classifier-free guidance [7]. Therefore,
we use “ugly, nsfw, (text:1.5), (copyright:1.25), (blurry:1.5), worst quality, watermark, signature, logo” as a default negative
prompt for the frozen SD branch. A prompt in the format “(k:w)” indicates the use of prompt reweighting [5]. For example,
if w is 2, the prompt is weighted twice as strongly, and if w is 0.5, it is weighted at half strength. At the same time,



we can optionally inject a negative global condition cG as follows: “a painting in (a frame), (collage drawing), (divided
painting:1.25), crop, text”.
The Number of Model Parameters To evaluate the computational complexity of the proposed methods, particularly the

SD Inpainting Ours (ControlNet) Ours (Fusion)

1,066,249,707 1,427,543,371 1,449,137,963

- # of parameters of CPM

- 361,293,664 382,888,256

Table 1. The total number of parameters for each model. The total parameters count include the variational autoencoder for compression
into the latent space, the CLIP model for text-to-image conditioning, the SD denoising U-Net, and the CPM.

newly introduced fusion-based composition planning module (CPM), we report the total number of parameters required for
outpainting inference. As shown in Table 1, the parameter count of the fusion-based CPM method is slightly larger than
that of the ControlNet-based [13] CPM. Note that the fusion-based CPM is trained from scratch for 50 epochs, while the
ControlNet-based CPM is trained through transfer learning by duplicating the pre-trained encoder of the SD model.

Figure 3. Qualitative results of the LHQ dataset based on the scenario of Figure 7-(a) in the main paper. An “*” indicates that the method
based on the progressive outpainting, whereas the others generate in all directions at once and are supported with super-resoultion. Same
seed value is used for the SD-based models.



3. Applications on Real Image Dataset
We sampled 1,999 natural landscape images from the LHQ [2] dataset. Although these images contain repetitive patterns
(e.g., forests) and are less sensitive to composition than artworks, they present a challenging setting to evaluate the gener-
alization ability of the proposed methods. For this experiment, the case in Figure 7-(a) in the main paper is applied with
r = 0.3 as illustrated in Figure 3. As shown in Table 2, the existing methods suffer from limited fidelity of local details,
achieving unsatisfactory patch FID scores.

Metric CLIP-aes↑ pFID@256↓ pFID@512↓
QueryOTR 4.236 71.08 38.21

PQDiff (gen) 3.546 99.25 61.59
PQDiff (copy) 4.005 72.16 40.60
SD Inpainting 5.187 31.72 23.93

Ours (ControlNet) 5.486 20.99 14.56
Ours (Fusion) 5.541 19.65 14.35

Table 2. Evaluation on 1,999 random samples from LHQ dataset. Note that the results of QueryOTR and PQDiff are resized to the original
aspect ratio and then processed with SR. The “copy” of the PQDiff method refers to a copy-and-paste post-processing approach, where the
original input is merged into the outpainting results, whereas “gen” does not. bold: best.

4. Discussion on the Aim of the Proposed Methods
In order to clarify the distinct intent of our study, this section compares our method with representative reference-based image
generation approaches. Existing methods usually feed the reference image into the generator and directly inject its prominent
content into the output. On the other hand, our methods treat the reference as a compositional cue and infer semantically
consistent content from the global scene, even when the reference image itself lacks the explicit corresponding content. This
context-aware inference clearly distinguishes our work from previous research.

Figure 4. Qualitative results of the WikiArt dataset based on the scenario of Figure 7-(b) in the main paper with r = 1. All methods are
based on the progressive outpainting. RealFill is trained for 2,000 steps with LoRA [8].



Figure 5. Qualitative results of the WikiArt dataset based on the scenario of Figure 7-(b) in the main paper with r = 1. All methods are
based on the progressive outpainting. RealFill is trained for 2,000 steps with LoRA.

To conduct this experiment, we select Paint-by-Example [1] and RealFill [3], two reference-based image generation
methods. The existing reference-based methods are designed to depend heavily on the reference image, so they often replicate
its content in the generated images. This tendency is evident in Figure 4 and Figure 5. Although these methods belong to
the category of reference-based generation, they are mainly effective for inpainting, where users deliberately insert specific
elements, but they are less appropriate for outpainting. Their limitation is tolerable when the scene contains repetitive patterns
such as the mountains or lake in Figure 5, yet it becomes pronounced for structured scenes in which composition and spatial



arrangement are crucial. In contrast, our approach places appropriate content by leveraging the global context of the reference
image, and it does so without labor-intensive conditions, such as explicit object reference images or user prompts. As a result,
artists who work with limited VRAM can split and extend high-resolution canvases with fewer trial-and-error iterations and
reduced manual overhead.

5. Additional Results and Visualization
In this section, we present additional qualitative results that could not be included in the figures of the main paper. First, we
present the blurriness map of Figure 9 of the main paper. The SD inpainting model, the ControlNet-based CPM model, and
the fusion-based CPM model performed the progressive outpainting, while the others did not. Figure 6 shows the level of
blurriness in the Figure 9, where brighter regions indicate higher levels of blur. Notably, we observe significant disparities
in the blur intensity between the inputs and generated regions produced by the Firefly method, whereas the other methods
maintain consistent levels. In addition, we present the qualitative results corresponding to the Table 1 and 2 in the main paper.
Initially, Figure 7 illustrates the results of the IconArt experiment corresponding to the Table 1. Since FID [6], CLIP text
score [10], and CLIP aesthetic score [11] are computed after resizing the results to a smaller size for input into the pre-trained
networks, these quantitative results are included in the main paper. However, as shown in Figure 7, the existing methods with
super-resolution generally suffer from severe sharpness degradation. Therefore, the blur measurement results are excluded
from the Table 1 of the main paper to ensure a fair comparison.

Secondly, we report additional qualitative results of the experiment corresponding to the Table 2 in the main paper. As
shown in Figure 8, the blur intensities of the results generated by the proposed methods appear generally darker compared to
those of Firefly. Furthermore, as observed in Figure 6, Figure 7, and Figure 8, the proposed methods minimize the blurriness
disparity between the input and the generated regions.

Lastly, we provide the qualitative results of the performance retention experiment for different ratios r of the task, as
described in the ablation study and Table 3 of the main paper. As shown in Figure 9, the model without the CPM becomes
increasingly prone to generating contextually irrelevant results and exhibits greater susceptibility to blur as the r increases.
For example, it produces awkward mountains at the top of landscape paintings or duplicated faces or figures in portraits. In
contrast, as illustrated in Figure 10 and Figure 11, outpainting models with the CPM produce natural landscapes that harmo-
nize with the surrounding content. Additionally, their blur maps appear darker compared to Figure 9, reflecting improved
sharpness. Notably, in vertically elongated portraits, the duplication of faces or figures is significantly mitigated, resulting in
more coherent and visually plausible outpainting outcomes.



Figure 6. Blurriness visualization of the Figure 9 in the main paper. The darker the area of the map, the sharper it is, while the brighter the
area, the blurriness becomes worse. An “*” indicates that the method based on the progressive outpainting, whereas Firefly generates in all
directions at once.



Figure 7. Qualitative results based on the scenario of Figure 7-(a) in the main paper. We report the quantitative results in the Table 1 of the
main paper, using IconArt [4] dataset. The inner area of red boxes in GT denotes input pixels. The darker the area of the map, the sharper
it is, while the brighter the area, the blurriness becomes worse. An “*” indicates that the method based on the progressive outpainting,
whereas the others generate in all directions at once and are supported with super-resoultion.



Figure 8. Qualitative results with corresponding blurriness maps based on the scenario of Figure 7-(b) in the main paper. We report the
quantitative results in the Table 2 of the main paper, using WikiArt [12] dataset. The darker the area of the map, the sharper it is, while the
brighter the area, the blurriness becomes worse. An “*” indicates that the method based on the progressive outpainting, whereas Firefly
generates in all directions at once.



Figure 9. Qualitative outpainting results and blurriness visualization maps of the SD Inpainting model for the experiment corresponding to
Table 3 in the main paper. The darker the area of the map, the sharper it is, while the brighter the area, the blurriness becomes worse.



Figure 10. Qualitative outpainting results and blurriness visualization maps of the ControlNet-based CPM method for the experiment
corresponding to Table 3 in the main paper. The darker the area of the map, the sharper it is, while the brighter the area, the blurriness
becomes worse.



Figure 11. Qualitative outpainting results and blurriness visualization maps of the fusion-based CPM method for the experiment corre-
sponding to Table 3 in the main paper. The darker the area of the map, the sharper it is, while the brighter the area, the blurriness becomes
worse.
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