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A. Dataset Creation

ManiFPT [60] provides an extensive benchmark dataset for
evaluating model attribution across a large array of GMs,
spanning 4 different training datasets and all 4 main GM
familys (GAN, VAE, Flow, Diffusion). However, what it
is currently lacking is the inclusion of multimodal models
such as vision-language models. To bridge this gap, and to
evaluate model attribution methods on a wider variety of
models, we created an extended benchmark dataset that in-
cludes SoTA vision-language GMs. In particular, we include
4 SoTA models (last row of Tab. 2) that can generate images
given input text prompts: Flux.1-dev, Stable-Diffusion-3.5,
Dall-E-3, and Openjourney. For all these models, we used
pre-trained models that are available either on Huggingface
or on public Github repositories.

A.1. Details on dataset creation

GM-CelebA dataset. To construct a dataset of faces that
resemble images in CelebA [40], we use the text prompt of "a
face of celebrity" to each of the vision-language models. For
example, for Flux.1-dev model, we use the Huggingface’s
‘diffuser* library to download the model weights, and used
each pretrained model with default sampling configurations
to generate 10k images with this prompt.

GM-CIFARI10 dataset. To generate images like the data
in CIFAR10, we created a text prompt for each class in
CIFAR1O (i.e., airplane, automobile, bird, cat, deer, dog,
frog, horse, ship, truck ), as “an image of {cifar10-class}”.
We then provided this prompt to each of the vision-language
models we added in Tab. 2, and used each pretrained model
with its default sampling configurations to generate a total
of 10k images per prompt per CIFAR10 class.

B. Experiments on robustness of model finger-
prints against post-processing

We evaluate the robustness of different model-attribution
methods against two common post-processing perturbations:
gaus- sian blurring (with increasing standard deviations) and
JPEG compression (with decreasing quality factors). We
train attribution methods on the training set, and apply these
perturbations only at test time, to evaluate attribution accura-
cies under the two post-processing operations. We evaluate
the test accuracies on all four datasets, using all 12 baseline
methods and our methods. Figure 4 shows our results. Our
methods (colored purple) consistently outperform all base-
lines, under both perturbation types and across all datasets.
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Figure 4. Robustness to test-time perturbation by Gaussian blurring (Left) and JPEG compression (Right). We evaluate the impact of two
common test-time perturbations (Gaussian blurring and JPEG compression) on attribution accuracy across four GM datasets (GM-CIFAR10,
GM-CelebA, GM-CHQ, GM-FFHQ). Each perturbation is applied only at the test-time. The plots report the accuracies of 13 attribution
methods, including our proposed methods, R-GMfpts and R-GMfptsrem (shown in purple). The dotted lines indicate chance-level accuracy.
(Left) shows attribution accuracy as a function of sigma used in Gaussian blurs, and (Right) as a function of JPEG quality. Our methods
consistently maintain higher attribution accuracy under both perturbations, demonstrating superior robustness across all four datasets. Link
to larger image.
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