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A. Technical details about diffusion ISs
DPS [7]: Diffusion Posterior Sampling (DPS) follows this
update rule:

xt−1 = DDIM(xt)− η∇xt
∥y −Ax̂0∥22,

where DDIM(·) represents a single update step of the DDIM
sampling [54], defined as:

xt−1 =
√
αt−1x̂0 − (1− αt−1)sθ(xt, t),

where x̂0 is estimated from xt, and sθ is the predicted score
at time t. The optimal step size η is dynamically set as
η = 1

∥y−Ax̂0∥2
2

, ensuring adaptive scaling of the likelihood
gradient.

LDPS: Latent Diffusion Posterior Sampling (LDPS) can
be seen as a direct extension of the image-domain DPS
approach proposed by Chung et al. [7]. The update rule for
LDPS is given by:

zt−1 = DDIM(zt)− ρ∇zt
∥y −AD (ẑ0)∥2

where ρ denotes the step size, and DDIM(·) represents a
single step of DDIM sampling. A static step size of ρ = 1 is
employed, as is commonly adopted in the literature.

LDIR [16] modifies LDPS by introducing a momentum-
based gradient update mechanism inspired by Adam. A
single iteration of the algorithm follows:

gt = ∇zt ∥y −AD (ẑ0)∥
m̂t = (β1mt−1 + (1− β1) gt) / (1− β1)

v̂t = (β2vt−1 + (1− β2) (gt ◦ gt)) / (1− β2)

zt−1 = DDIM(zt)− ρ
m̂t√
v̂t + ε

where ◦ denotes element-wise multiplication, and β1, β2, ε
are hyperparameters of the method. The momentum-based
approach in LDIR leads to smoother gradient updates. The
parameters are set as β1 = 0.9, β2 = 0.999, ε = 1e − 8.
The step size ρ is set to be 0.05.

GML-DPS, PSLD [48]: GML-DPS introduces a con-
straint to ensure that the estimated clean latent ẑ0 remains
stable after encoding and decoding. The update rule is:

zt−1 = DDIM(zt)

− ρ∇zt
(∥y −AD (ẑ0)∥2 + γ ∥ẑ0 − E (D (ẑ0))∥2)

PSLD refines this approach by incorporating an orthogonal
projection step onto the subspace defined by A between the
decoding and encoding stages to enforce fidelity:

zt−1 = DDIM(zt)− ρ∇zt ∥y −AD (ẑ0)∥2
− γ∇zt

∥∥ẑ0 − E (A⊤y +
(
Id−A⊤A

)
D (ẑ0)

)∥∥
2
.

A static step size of ρ = 1 is applied,and we set γ = 0.1.
These methods aim at guiding latents toward the natural
manifold, enforcing their stability after autoencoding.

P2L [8]: The P2L algorithm alternates between two main
update steps: optimizing the text embedding c and refining
the latent variable zt.

The first step focuses on updating the text embedding c
to align it with the measurement y and the current diffusion
estimate zt. This is done by maximizing the posterior p(c |
zt,y), leading to the gradient update:

∇c log p(c | zt,y) ≈∇c∥AD(E[z0 | zt, c])− y∥22.

This optimization uses stochastic optimizers like Adam [24].
In the second step, the latent variable zt is refined using

the optimized text embedding c∗t obtained from the first step.
This update aims at maximizing p(zt | y, c∗t ), resulting in
the following gradient expression:

∇zt log p(zt | y, c∗t ) ≈s∗θ(zt, c∗t )
+ρt∇zt

∥AD(E[z0 | zt, c∗t ])− y∥22,

where s∗θ(zt, c
∗
t ) is the score function from the diffusion

model and ρt is a step size that balances the influence of the
likelihood term.

TReg [23]: The TReg algorithm solves the following prox-
imal optimization problem in an ADMM [5] style:

min
x,z

lMAP(z) + γlTReg(z) = lMAP(z) + ∥z − ẑ0|t∥22

s.t. x = D(z)

where the objective of the maximum a posteriori (MAP)
problem is defined as

ℓMAP(z) = − log p(z | D(z),y)− log p(y | D(z))

=
∥z − E(D(z))∥22

2σ2
E

+
∥y −A(D(z))∥22

2σ2
,

where σE is the encoder variance. First is solved

x̂0(y) = min
x

∥y −A(x)∥22
2σ2

+ λ∥x−D(ẑ0|t)∥22,



where x = D(z), and then:

ẑema
0 = argminz ζ∥z − E(x̂0(y))∥22 + γ∥z − ẑ0|t∥22

= αt−1E(x̂0(y)) + (1− αt−1)ẑ0|t (10)

where ζ, γ are empirically chosen to satisfy αt−1 = ζ/(ζ +
γ) in order to give the second equality in (10).

After these two steps, a DDIM step is run and eventu-
ally the null prompt is optimized through what is called
”Adaptive Negation”, i.e.:

c∅ ← c∅ − η∇∅(Timg(x̂0(y)), c∅)

where η is a fixed learning rate and Timg denotes the CLIP
image encoder.

B. Hyperparameters tuning
As deeply studied in the theoretical derivation of our method
in Section 4, we introduce the hyperparameter δk as it rep-
resents the implicit Euler step size. We will now show the
values of δk used for each task.
1. Gaussian Deblurring:

• For k ≥ 5: δk = 2 · 10−5(1− αtk)∥Au(k) − y∥/σn

• Otherwise: δk = 4 · 10−5(1− αtk)∥Au(k) − y∥/σn

2. Motion Deblurring:
• For k ≥ 5: δk = 4 · 10−6(1− αtk)∥Au(k) − y∥/σn

• Otherwise: δk = 2 · 10−6(1− αtk)∥Au(k) − y∥/σn

3. Super Resolution ×8:
• For k ≥ 6: δk = 6 · 10−3(1− αtk)∥Au(k) − y∥/σn

• Otherwise: δk = 3 · 10−3(1− αtk)∥Au(k) − y∥/σn

4. Super Resolution ×16:
• For k ≥ 6: δk = 2 · 10−2(1− αtk)∥Au(k) − y∥/σn

• Otherwise: δk = 9 · 10−3(1− αtk)∥Au(k) − y∥/σn

5. Box Inpainting:
• For k ≥ 5: δk = (1− αtk)

• Otherwise: δk = 0.5(1− αtk)

These choices can be motivated in the following way: the
normalized L2 norm acts as a regularizer that strengthens
the data-fidelity term when the reconstruction is poor (i.e.
big L2 norm) and gives more freedom to the prior otherwise.
In particular, we expect the norm to be big in the first steps,
when we need to prevent the prior from deviating from the
observation, and small in the final steps when it is more
important to be able to generate detailed high-frequency
features that cannot be recovered from the noisy observation.
A similar reasoning leads to the addition of the 1−αtk term.

The PSNR/LPIPS performance of our method is quite
robust to the choice of δk ∈ (0.1δ∗k, 10δ

∗
k) as shown below

for gaussian deblurring: LATINO uses the optimal δ∗k as
defined above; LATINO-s uses δk = 0.1δ∗k; LATINO-b
uses δk = 10δ∗k.
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Figure 6. Qualitative comparison on Gaussian deblurring with
different δk schedules. LATINO uses δ∗k , LATINO-b uses 10δ∗k ,
and LATINO-s uses 0.1δ∗k .

PSNR vs. δk LPIPS vs. δk

Figure 7. Robustness of LATINO’s choice of δk: performance
curves on FFHQ-1024 Gaussian deblurring.

C. LATINO as a split-step Langevin sampler
As previously noted, computing exact solutions to the
Langevin diffusion process (3) is generally not possible.
Therefore, solutions are usually obtained by using a discrete-
time numerical integrator whose accuracy and cost are con-
trolled by the size of integration time step. LATINO employs
a split-step discretization of the Langevin diffusion process
(3) in which the Brownian motion and the drift term associ-
ated with the prior density are approximately integrated via
the stochastic auto-encoding step (4.a). The likelihood term
is handled via an implicit (backwards Euler) or proximal
step (4.b), hence the iterate xk+1 appears on both sides of
the second row, resulting in improved stability properties
that permit larger step sizes [1]. The Langevin SDE is a time-
homogeneous process, hence gy : x 7→ − log p(y|x) is the
exact likelihood or data fidelity term, a key advantage w.r.t.
DPS, ΠGDM, DiffPIR, etc., which require approximations.
Indeed, the use of the Langevin SDE allows employing the
likelihood of y w.r.t. the (noise-less) image x, which is usu-
ally tractable. In contrast, strategies such as DPS or ΠGDM
seek to embed the likelihood of y w.r.t. a noisy version of
x within a time-inhomogeneous reverse diffusion process;
such likelihoods are often intractable and require approxima-
tions. Also note that the iteration index k is related to the



time of the Langevin diffusion (3)-(4), which goes forward
as the algorithm iterations progress. It is not the time of the
diffusion SDE (1) which is encapsulated into ((4), top row).

With regards to convergence properties of LATINO,
known theoretical convergence results for PnP Langevin
sampling suggest that when t is mall, LATINO should con-
verge under a wide class of probability metrics towards a
biased approximation of the posterior distribution of inter-
est [26]. Empirically, we observe that LATINO converges
very quickly, especially when t is large, allowing to gener-
ate samples in very few steps. A theoretical analysis of the
convergence of LATINO for large t is a main perspective for
future work.

D. LATINO-PRO: gradient computation
As discussed in Section 5, the key step of our LATINO-PRO
Algorithm 2 is the computation of the following quantity

cm+1 = ΠC

[
cm + γm∇c log p(x

(1), . . . ,x(N)|cm)
]
,

(11)
where {x(k)}Nk=1 is a Markov chain targeting p(x|y, cm).
This requires running a full iteration of our LATINO algo-
rithm 1, and in particular, we are interested in storing the
latent realizations {z(k)

tk
}Nk=1, as this leads to tractable com-

putations by automatic differentiation (to simplify notation,
we henceforth use use ztk ≡ z

(k)
tk

and c ≡ cm). During the
optimization steps in Algorithm 2, we consider N = 4, so
the computations become:

log p(zt1 , zt2 , zt3 , zt4 | c) = log p(zt4 | zt3 , c)+
+ log p(zt3 | zt2 , c) + log p(zt2 | zt1 , c) + log p(zt1 | c).

(12)

All the terms can be computed through the definition of the
latent part of our stochastic auto-encoder, i.e.,

zti+1 =
√
αti+1Gθ(zti , ti, c) +

√
1− αti+1ϵ, ϵ ∼ N (0, Id) ,

and hence

zti+1 | zti , c ∼ N (Gθ(zti , ti, c), (1− αti+1)Id) ,

so

−∇c log p(zti+1 |zti , c) =
∇c∥zti+1 −√

αti+1Gθ(zti , ti, c)∥2

2(1− αti+1)
.

This holds for all terms in (12), including log p(zt1 | c),
for which we simply have a dependence on the starting
z0 ∼ N (A†y, (1 − αt0)Id) in the equation. Also, we do
not include p(zt4 | zt3 , c) as zt4 is deterministically de-
termine from zt3 . Instead, zt4 initializes the next iteration
of LATINO within the SAPG scheme. In conclusion, (11)
becomes

cm+1 =

ΠC

[
cm + γm∇c

2∑
i=0

∇c∥zti+1 −√
αti+1Gθ(zti , ti, c)∥2

2(1− αti+1)

]
,

E. Adaptation to non-linear operators
When the pseudoinverse is not accessible, the proximal oper-
ator can be computed with Conjugate Gradient in the linear
case. For nonlinear operators, a direct least squares method
can be adopted, as already done in [23], using the Adam op-
timizer with learning rate 1e−3 and β1 = 0.9, β2 = 0.999
for 300 iterations to obtain the solution of

min
x

∥y −A(x)∥22
2σ2

+ λ∥x− x̂0∥22.

In Fig. 9, we tackle a non-linear phase retrieval task

y =
∣∣DFT(x)

∣∣+ n

on FFHQ-512, and compare LATINO-PRO with TReg and
LDPS (P2L and PSLD only work for linear problems). Our
method is around ×4 faster than TReg and can handle
tougher cases like images with complex backgrounds, which
cause failures in TReg (bottom row). We stress the fact that
a key strength of our method is the possibility to use various
discretization schemes in place of the implicit proximal in 4
(implicit–explicit, Runge–Kutta) and even off-the-shelf NN
to approximate proxδgy when a closed form is not available.

Meas. GT LDPS LATINO TReg

Figure 9. Nonlinear phase retrieval. Top row: Example 1; bottom
row: Example 2.

F. Ablation study: prompt choice
Table 5 highlights the robustness of the reconstruction qual-
ity to slight semantic variations of the initial prompt. In
particular, we observe that less informative prompts often
yield better metrics than those that include information about
the degradation operator. LATINO-PRO is more robust to
variations in the prompt initialization, as it seems that the
optimization scheme converges towards an optimal prompt
in all three cases.

Prompt LATINO LATINO-PRO
LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓

"a photo of" 0.312 26.93 29.24 0.299 27.25 28.39
"a high resolution photo of" 0.319 26.85 29.22 0.301 27.19 27.59
"a sharp photo of" 0.318 26.88 29.17 0.301 27.14 27.80

Table 5. Performance of LATINO and LATINO-PRO on FFHQ-
1024 1k test dataset, motion blur task, under different prompts.



Deblur (Gaussian) SR×16

Method NFE↓ FID↓ PSNR↑ FID↓ PSNR↑
LATINO-PRO 68 18.37 26.82 30.40 21.52
LATINO 8 20.03 26.25 42.14 20.05
LATINO-LoRA 8 57.96 23.02 76.53 17.82

Table 3. Results for Gaussian Deblurring with σ = 5.0, and ×16 super-resolution, both with noise σy = 0.01 on the AFHQ-512 val dataset.
Our LATINO, LATINO-PRO, and LATINO-LoRA models are compared. Prompt: a sharp photo of a dog or a sharp photo
of a cat. Bold: best, underline: second best.

Deblur (Gaussian) Deblur (Motion) SR×8

Method NFE↓ FID↓ PSNR↑ LPIPS↓ FID↓ PSNR↑ LPIPS↓ FID↓ PSNR↑ LPIPS↓
LATINO-PRO 68 31.98 29.11 0.292 27.80 27.14 0.301 40.95 26.58 0.355
LATINO 8 33.94 28.95 0.296 29.17 26.88 0.318 37.13 26.22 0.356
LATINO-LoRA 8 33.70 28.20 0.340 40.66 24.83 0.407 50.89 25.80 0.428

Table 4. Results for Gaussian deblurring with σ = 3.0, motion deblurring, and ×8 super-resolution, all with noise σy = 0.01 on the
FFHQ-512 val dataset. Our LATINO, LATINO-PRO, and LATINO-LoRA models are compared. Prompt: a sharp photo of a
face. Bold: best, underline: second best.
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Figure 8. Qualitative comparison of image restoration results. Samples taken from AFHQ-512. Prompt: a sharp photo of a dog
or a sharp photo of a cat.

G. Ablation study: prior choice

Alongside DMD2 [64], other distilled models can be found
in the literature, some of which are based on the SD1.5 [47]
backbone. [31] introduces a LoRA fine-tuning of SD1.5
that allows a few-step sampling following the CM scheme.
We decided to try also this model to show the universal
adaptability of our model.

We consider the 8-step version of SD1.5-LoRA, and we
tried to solve the same inverse problems as done in Section
6: Gaussian deblurring with σ = 5.0 and SR×16 on the
AFHQ-512 1k val dataset, Gaussian deblurring with σ = 3.0
and SR×8 on the FFHQ-512 1k val dataset; in all cases
σn = 0.01. Table 3 and Table 4 sum up these results, while

Figure 8 and Figure 12 show an extended visual comparison.
We call this version of our algorithm LATINO-LoRA.

To better understand the difference in performances
between the SD1.5-LoRA [31] and the DMD2 [64], we
provide in Figure 10 some prior-generated images from the
same prompts used during the reconstructions, focusing
on the faces case. It is evident how SD1.5-LoRA tends
to generate cartoonish features that are good-looking but
unrealistic and that this increases the perceptual distance
during the reconstruction process. At the same time, we
show how the original SD1.5 can generate quite realistic
faces as well, comparable to the DMD2 ones.

To further show that the performances are not related



to the improved capacities of the LCM prior, we compare
LATINO with LDPS, PSLD, and P2L using SDXL, the LDM
from which DMD2 [64] was distilled, as the prior. Since
SDXL uses 50 time steps, while the other methods use 1000,
we report in Figure 11 results on a Gaussian deblurring
example on FFHQ-1024 for both settings.

DMD2 SD1.5-LoRA SD1.5

Figure 10. Prior comparisons. Prompt: a photo of a face.

H. Equivalent HR problems
H.1. The deblurring case
In order to precisely compare our deblurring results with the
ones of methods that work with lower resolutions we need
to transform our low-resolution problem into an equivalent
high-resolution one, and go back to lower resolution.

LR problem: Our original problem is the following de-
blurring one: Find x from measurement y obtained via (1)

(1) y = x ∗ h+ n

where ∗ denotes convolution, and h is a low-resolution blur
kernel.

HR problem: Our proxy high-resolution problem is a joint
deblurring and super-resolution problem: Find X from mea-
surements y obtained via (2)

(2) y = Ss(X ∗H) + n

where H is a high-resolution blur kernel. The output of
our algorithm is x = Ss(X), where Ss is a downsampling
operator to be defined below. In our case s = 2 since our
method works at resolution 1024 × 1024 and the other
algorithms work at resolution 512× 512.

If we want problems (1) and (2) to be equivalent, we need
to find a high-resolution kernel H such that:

Ss(X) ∗ h = Ss(X ∗H). (13)

The following definition establishes a family of subsam-
pling operators Ss for which condition (13) is satisfied, as
long as the HR kernel H is chosen as shown in proposition 1.

Definition 2. An alias-free subsampling operator Ss is de-
fined as:

Ss(X) =↓s (hs ∗X)

where ↓s is the decimation operator (which takes one sample
every s pixels without any filtering) and hs is a convolution
kernel with spectral support in [−π/s, π/s].

The following choices provide alias-free subsampling
operators (or approximations thereof)
1. hs = sinc(·/s) = sincs, i.e. standard Shannon subsam-

pling.
2. hs = F−1(φ) where φ is a smooth function with support

in [−π/s π/s]. Avoids Gibbs artifacts that are commonly
associated with Shannon subsampling.

3. hs = kernel implicit in spline downsampling of order k.
This is not exactly alias-free, but a good approximation of
Shannon subsampling for sufficiently large k. In practice
we use bicubic downsampling for k = 3, which is a
sufficiently good approximation.

Proposition 1. If Ss is an alias-free subsampling operator,
then any H satisfying

h =↓s (sincs ∗H) (14)

satisfies the equivalence condition (13).

Proof. Let N2 be the size of image X . Let Ps denote the
periodization operator with period N/s. Then using the
fact that convolution (respectively s-sampling) becomes a
product (respectively N/s-periodization) we have that

F(Ss(X ∗H))

=F(↓s (hs ∗X ∗H))

=Ps [F(hs)F(X)F(H)F(sincs)]
=Ps [F(hs)F(X)]Ps [F(H)F(sincs)]
=F(↓s (hs ∗X))F(↓s (H ∗ sincs))
=F(Ss(X))F(↓s (H ∗ sincs)).

The third line is true because both F(hs)F(X) and
F(H)F(sincs) are supported in [−π/s, π/s]. Taking in-
verse fourier transform we have

Ss(X ∗H) = Ss(X)∗ ↓s (H ∗ sincs) = Ss(X) ∗ h

and the equivalence is established.

Practical Considerations. When Ss is Shannon subsam-
pling, any H such that Ĥ|[−π/s,π/s]2 = ĥ satisfies condition
(14). In particular we can choose Shannon (zero-padding)
upsampling, or a kernel H that satisfies (14) and minimizes
the total variation (to minimize Gibbs artifacts).

Similarly when Ss is bicubic downsampling, we choose
H as bicubic upsampling of h. In this case we have an ap-
proximation of conditions (13) and (14) that is good enough
for our purposes.
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Figure 11. Comparison on a sample from FFHQ-1024 using SDXL as an LDM prior. Prompt: a sharp photo of a face.
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Figure 12. Qualitative comparison of image restoration results. Samples taken from FFHQ-512. Prompt: a sharp photo of a face.

H.2. The super-resolution case
To precisely compare our super-resolution results with the
ones of methods that work with lower resolutions, we need
to transform our low-resolution problem into an equivalent
high-resolution one, and go back to lower resolution.

LR problem: Our original problem is the following super-
resolution problem: Find x from the measurements y ob-
tained via (1)

(1) y = Sa(x) + n,

where Ss is a downsampling operator of factor s > 0.

HR problem: Our proxy high-resolution problem is a
super-resolution problem: Find X from measurements y
obtained via (2):

(2) y = Sab(X) + n.

The output of our algorithm is x = Sb(X). In our examples
a = 8 and b = 2 so that ab = 16, or a = 16 and b = 2 so
that ab = 32.

If we want problems (1) and (2) to be equivalent, we need
to find a subsampling operator such that:

Sab(X) = Sa(Sb(X)). (15)

Any subsampling operator derived from a wavelet trans-
form (including average pooling) satisfies condition (15).
So does Shannon sub-sampling. Bicubic downsampling
approximately satisfies condition (15) since it is a good ap-
proximation of Shannon subsampling.

I. Additional results: FFHQ1024
In Figures 13, 14 and 15 we show more tests at the 1024×
1024 resolution. We also provide in Table 6 the metrics for
the FFHQ-1024 1k val dataset, to allow comparisons with
future works. The tasks considered are the same of Section
6, adapted to the new resolution, as discussed in H.



Deblur (Gaussian) Deblur (Motion) SR×16
Method NFE↓ FID↓ PSNR↑ LPIPS↓ FID↓ PSNR↑ LPIPS↓ FID↓ PSNR↑ LPIPS↓
LATINO-PRO 68 31.98 28.76 0.372 27.80 26.89 0.423 40.95 25.81 0.445
LATINO 8 33.94 28.41 0.382 29.17 26.58 0.445 37.13 25.71 0.450

Table 6. Results for Gaussian deblurring with σ = 6.0, motion deblurring, and ×16 super-resolution, all with noise σy = 0.01 on the
FFHQ-1024 val dataset. Our LATINO and LATINO-PRO are compared. Prompt: a sharp photo of a face.

J. Memory and time consumption

In Table 7 we provide an exhaustive comparison of our mod-
els with respect to current SOTA in terms of memory con-
sumption and time needed. We implemented versions of P2L
and TReg starting from the official codebases as described
in [8, 23]. For estimating the memory consumption and
speed in the XL versions of these two methods, we adapted
such codes to the SDXL prior. As an important remark, we
highlight that SD provides float16 implementations (half pre-
cision) to speed up and reduce memory usage. However, this
implementation does not allow taking gradients with respect
to the score and decoder network, as it results in an integer
overflow error during the torch.autograd() call. This
forces all the implementations below (except for TReg, as it
does not require such gradients) to make use of the float32
(full precision) implementation of SDXL, which explains
the even bigger overhead in GPU usage and time.

Method GPU (Gb) Time (s) Resolution
LATINO 13.6 5.53 10242

LATINO-PRO 23.4 48.8 10242

LATINO-LoRA 4.16 2.89 5122

TReg 7.75 60.5 5122

P2L 8.18 402 5122

LDPS 8.16 279 5122

PSLD 9.44 326 5122

LDPS-XL 56.6 1670 10242

PSLD-XL 69.5 2200 10242

TReg-XL 33.5 240 10242

P2L-XL 57.1 6800 10242

Table 7. GPU Memory and Time consumption comparison

The NFEs considered for each algorithm are the same as
shown in Table 1. As a reference, we also provide in Table
8 the GPU memory consumption of the respective priors,
which can be considered as lower bounds. The times are
those obtained by running the algorithms on a single Nvidia
A100 GPU, averaging the times of the different inverse prob-
lems considered.

Prior Method GPU (Gb) Resolution
DMD2 10.7 10242

SD1.5 3.25 5122

SD1.5LoRA 3.84 5122

Table 8. GPU Memory consumption when sampling an image with
different generative models priors).

K. Comparison with TReg
One of the main strengths of SOTA algorithms such as TReg
is the possibility of shifting the semantic domain of the recon-
struction through the prompt c. As we described in Section
5, our algorithm can obtain the same type of results, provid-
ing a useful fast and light tool for image editing. To prove
this, we performed experiments on the Food-101 dataset
[4] as done in [23] as shown in Figure 16. The degrada-
tions used are Gaussian Deblurring of intensity σ = 5.0 and
super-resolution ×16, both with an additional white noise of
σn = 0.01. All the images are at 512×512 resolution, mean-
ing that, as for the AFHQ dataset, we have to rescale the
problems to their equivalent 1024×1024 resolution versions
as seen in H.1,H.2. In particular, the images obtained are at
a higher resolution than the original ones, i.e. 1024× 1024.

To further show the improvements in the reconstruction
quality with respect to both TReg and P2L, we provide a
comparison of the results obtained on the AFHQ val dataset.
Together with Table 1, we show in Figure 17 and 18 visual
examples.

L. Prompt Tuning: experimental results
In the Experimental section 6, we explored prompt tuning as
a way to improve the reconstructions when the prompt is
already aligned with the image semantic (e.g., a sharp
photo of a face for the FFHQ dataset). We will now
show the capabilities of LATINO-PRO to significantly
improve the reconstructions in cases where the given prompt
is not aligned.

In Table 9, we can see how when we try to reconstruct
images of dogs with the prompt a sharp photo of
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Figure 13. Gaussian deblur FFHQ-1024 LATINO-PRO.
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Figure 14. SR×16 FFHQ-1024 LATINO-PRO.
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Figure 15. Motion Deblurring FFHQ-1024 LATINO-PRO.



Measurement GT Spaghetti Macarons Hamburger Fried rice

Figure 16. Visual results of the 8-steps LATINO on Food101 dataset for semantic shift task.



Measurement GT LATINO-PRO TREG P2L PSLD

Figure 17. Comparisons between LATINO-PRO, TReg and P2L.



Measurement GT LATINO-PRO TREG P2L PSLD

Figure 18. Comparisons between LATINO-PRO, TReg and P2L.

Deblur (Gaussian) SR×16

Method NFE↓ FID↓ PSNR↑ LPIPS↓ FID↓ PSNR↑ LPIPS↓
LATINO-PRO 68 24.56 27.77 0.347 39.85 22.28 0.463
LATINO 8 28.02 27.21 0.360 59.03 20.84 0.496
LATINO-PRO ”a cat” 68 48.93 27.42 0.382 125.63 22.23 0.502
LATINO ”a cat” 8 82.45 26.34 0.420 190.04 20.09 0.547
LDPS 1000 81.18 24.86 0.502 154.3 18.26 0.667
PSLD [48] 1000 41.04 26.12 0.455 92.35 22.20 0.585

Table 9. Results for Gaussian Deblurring with σ = 5.0, and ×16 super-resolution, both with noise σy = 0.01 on the AFHQ-512 dogs val
dataset. Base prompt when not specified: a sharp photo of a dog. Bold: best, underline: second best.



Prior sample at Step 0 Optimized prior sample GT Measurement Restored

Figure 19. Effect of prompt optimization on the AFHQ-dogs val dataset. Initial prompt: a sharp photo of a cat.

Figure 20. Metrics evolution during LATINO-PRO iterations for the example in Figure 19. Initial prompt: a sharp photo of a cat.

Prior sample at Step 0 Optimized prior sample GT Measurement Restored

Figure 21. Effect of prompt optimization on the AFHQ-dogs val dataset. Initial prompt: a sharp photo of a dog.



a cat, the PSNR, SSIM and LPIPS metrics are much
worse than with the prompt a sharp photo of a
dog. However, LATINO-PRO brings the results closer
to the optimal case. In particular we can appreciate the
effectiveness in the Gaussian deblurring case, while the SR
×16 seems harder to re-align. This is in fact in accordance
with what we would expect, since the amount of information
contained in the degraded observation y is small, and thus
the prior has more influence on the reconstruction. In pracice
an high resolution image of a cat could be compatible with a
low resolution one of a dog, and thus the prompt is not able
to learn the actual ground truth.

In Figure 19 we can see how the prior can learn from the
measurement the main features. The semantic shift from cat
→ dog is appreciable, as well as how the main colors are
learned by the prior. Figure 20 shows the trend of LPIPS and
PSNR during the LATINO-PRO iterations, averaged over 20
different seeds. We decided to run the algorithm for 25 steps
to show why it is preferable to early-stop it at around 15−20
steps, the LPIPS metric indeed tends to usually rise after
this interval, and the PSNR does not show any significant
improvement.

A similar experiment has been conducted on less extreme
cases, as shown in Figure 21, where the prompt given was a
sharp photo of a dog. We can observe the ability
of the prior to learn characteristics like the breed of the dog
or whether it is a puppy or an adult.

M. Inpainting

While in Section 6, we focused on the deblurring and super-
resolution tasks, we here apply our model to the inpainting
case. We consider box impainting tasks where we cover the
eyes of the animals in the AFHQ-512 dataset and both the
eyes and the mouth for the faces in the FFHQ-512 dataset,
as done in TReg [23]. We show the FID and PSNR metrics
for the FFHQ and AFHQ 1k validation datasets in Table 10.

In Figure 22 and Figure 23 we show a comparison of
the available methods, . For the TReg algorithm for which
the code is unavailable, the restored image is not available
in the original paper/website, while the entries in the table
are those advertised in the paper [23]. The last rows were
obtained using the LATINO-PRO model, giving as prompt
a photo of + a face or a dog + the specific caption.
The results can be interpreted in the following way: the
reduced number of steps of LATINO makes the inpainting
task more challenging, especially for more complex images
such as faces. The prompt optimization done through SAPG
helps to mitigate this phenomenon with better visual results,
especially for the AFHQ case. The high performance of the
proposed method on the averaged metrics show that similar
problems are present in current SOTA methods.

FFHQ AFHQ

Method FID↓ PSNR↑ FID↓ PSNR↑
LATINO-PRO 67.79 20.55 19.91 21.05
LATINO 87.78 20.01 27.01 19.92
P2L [8] 85.32 16.84 138.4 16.07
TReg [23] 66.93 19.95 51.97 17.39
PSLD [48] 60.97 19.76 104.7 16.93

Table 10. Box Inpainting results on FFHQ (left) and AFHQ (right).
Bold: best, underline: second best.
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Figure 22. Box inpainting results on FFHQ-512. Middle row:
LATINO-PRO with the prompt a sharp photo of a face,
P2L and PSLD. Bottom row: LATINO-PRO with different prompts.

N. Harder cases
As shown in the the preview Figure 1, LATINO-PRO is able
to solve also harder restoration tasks. Here we provide in
Figure 24 more visual results on the FFHQ1024 in this direc-
tion. In particular we observe an high level of consistency
for aggressive tasks like Gaussian Deblurring with σ = 20.0
pixels and ×32 super-resolution. We identify as a limitation
the inability of our algorithm to keep the same level of con-
sistency when the noise level is increased to σn = 0.1. The
prior tendency to dominate is not contrasted enough by the
proximity operator, and the results tend to deviate more from
the actual ground truth.
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Figure 23. Box inpainting (AFHQ-512). Second row: LATINO-
PRO with the prompt a sharp photo of a dog, P2L and
PSLD. Last row: LATINO-PRO with various prompt initializations.

Measurement GT LATINO-PRO

Figure 24. Qualitative comparison of LATINO-PRO on hard image
restoration on FFHQ-1024. Tasks: Gaussian deblur σ = 20.0
and ×32 super-resolution with noise σn = 0.01. Gaussian deblur
σ = 10.0 and ×16 super-resolution with noise σn = 0.1.


