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A. Training Data Generation
A.1. Function and Object Taxonomy

List of functions. To obtain our taxonomy of functions,
we first take the function lists defined by [6, 9] and ask
GPT-4 [10] to expand them. Our prompt is a simple “Given
this list of functions, generate more options for object func-
tions.” We manually process this list by simplifying synony-
mous functions into the most generic function to reduce re-
dundancy, e.g., “slice-with” and “chop-with” get absorbed
into “cut-with“, or “skewer-with” and “bore-with” get ab-
sorbed into “pierce-with”. The final list of 24 functions is
shown in Table 6.
Finding object categories given a function. To generate
a list of object categories suitable for the chosen functions,
we use the prompting strategy shown in Figure 7. We com-
bine the common and uncommon lists and remove object
names that are synonyms or that would require significant
improvisation to achieve a certain function well.

A.2. Functional Part Description Generation
Using LLMs, we have created a list of functions and a
list of object categories that can carry out those functions.
Given an object category and a function, we now require a
means to generate part names and descriptions to prompt the
grounded VLM. To obtain a list of functional part names,
we use the prompting strategy shown in Figure 8. This
produces a list of parts for each (object category,
function) pair, which we manually filter based on the
most precise part. More specifically, if GPT generates
“blade” and “point” for (knife, pierce-with), we
will choose “point.” Querying different functions for the
same object may result in the same functional part descrip-
tion being output multiple times with small variability. To
combine these descriptions, we simply prompt GPT-4 to
summarize them into one.

A.3. Objaverse Dataset Filtering
The Objaverse [1] dataset does not come with high-quality
labels, making it challenging to use as a training dataset for
tasks that require semantic object understanding. There is

the Objaverse-LVIS split, but it is a small subset of the com-
plete Objaverse, and the labels are noisy. To address this,
Caption3D [8] proposes a technique for generating captions
for ≈ 600K of the assets in Objaverse based on a com-
bination of VLMs and LLMs. However, these captions are
still insufficient for our purpose because they do not contain
explicit category labels.

For each caption from Caption3D, we propose to filter
it by comparing it with our list of object categories from
Appendix A.1. However, doing this naively using a large
language model like Llama [2] would require about 100M
model inferences, making this intractable. To resolve this
and make the procedure more efficient, we propose summa-
rizing each caption into a single noun using Llama3 with the
prompting strategy described in Figure 9. After converting
the list of captions into a list of nouns, we use Llama3 word
embedding distance to determine whether the noun belongs
to the list of categories we generated in Appendix A.1. Last,
we ask Llama to verify the matches from word embedding
as a final pass.

A.4. CogVLM Prompting and Aggregation
We use the descriptions generated in Appendix A.2 to
prompt the cogvlm-grounding-generalist-v1.1
variant of CogVLM [14], which has been tuned for referring
expression comprehension. Specifically, given a prompt
like “What are the exact bounding boxes of <expr> in
the provided picture?”, where <expr> can be a noun or
a descriptive phrase, the model is tuned to produce a text
sequence describing a bounding box. Because of the sam-
pling inherent to language transformer model inference, the
bounding boxes vary across trials. Our procedure to label
functional parts using CogVLM outputs consists of the fol-
lowing steps:
1. Render 19 views per object that shows it from various

angles, including from above and below.
2. For each functional part description and each view, query

CogVLM for four trials to obtain the bounding box
pseudo-labels. For small parts like points or tips, we do
a second iteration that zooms into the initial bounding
boxes to improve precision.
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Figure 1. Examples of pseudo-labeled functional parts in point clouds and images using CogVLM [14]. Using the procedure outlined
in Appendix A.4, we pseudo-label images with masks for the object functional parts. Notably, this pipeline has the ability to generate part
labels for non-convex object parts, such as a mug’s rim, and for parts that lack clear edge boundaries, such as a teapot’s spout. Point clouds
are shown in views that best capture the aggregated functional part labels.

3. Aggregate all trials and views onto a point cloud of 100K
randomly sampled points on the object’s surface. Ev-
ery time a given point in the point cloud gets labeled
by a bounding box in a different view, we increment
its score. The final numbers are normalized to be in 0-
1. For prompts that specifically ask for the labeling of
edges, we multiply the point cloud with the per-point
edge probabilities from SED-net [7], a method for de-
composing point clouds into primitives.

4. Given this point cloud, for any rendered image of the ob-
ject, we can project the point cloud into 2D and produce
a binary mask with Otsu’s method [12] and a series of
binary dilation/erosion steps to close holes in the mask.

Example outputs of this procedure are shown in Figure 1.

B. Additional Training and Evaluation Details

B.1. Ground-Truth Generation

In this section, we provide additional details for deriv-
ing ground-truth 2D dense correspondences from 3D align-
ment. Given two object meshes that can perform the same
function, we obtain their 3D functional alignment and the
3D bounding boxes for the functional parts using the pro-
cedure in Section 3.2 of the main paper. Given rendered
images I1, I2 of the two assets, we first find 2D pixels
P1, P2 that would back-project to 3D points within the la-
beled functional part bounding boxes. The set of pixels P1

and P2 represent the functional part segmentation on the
two images. Then, we perform minimum cost matching
where the cost between two pixels p1 ∈ P1 and p2 ∈ P2 is
measured by the distance between their back-projected 3D
locations. In particular, we use the Hungarian algorithm.
However, since the Hungarian algorithm requires one-to-
one matches, we subsample the set between P1 and P2 that
has more pixels using furthest point sampling. The output
of the Hungarian algorithm constitutes the ground-truth 2D

dense functional correspondences.
Practically, we randomly sample rendered images from

the top 5 out of 30 views where the functional part is most
visible. We do so for six trials and repeat the procedure
above to obtain 2D ground-truth annotations for the six view
pairs for each pair of assets. Among these trials, ambiguity
in the correspondence definition may arise due to 3D sym-
metries. We disambiguate this based on the objects’ orien-
tation when projected in the 2D images. For instance, for
two rims in 2D, the top (in 2D, relative to the sides of the
image) of one rim should align with the top of the other rim.
We believe this is appropriate as it is the first investigation
of this problem setting. In future work, we aim to refine
the task and model to capture such ambiguity. As such,
we manually filter the derived 2D annotations based on the
ground-truth dense visualizations to disambiguate and en-
sure high quality.

B.2. Additional Technical Details

Model training. For training our full models, we found that
sampling points solely on the functional part for the spatial
contrastive loss helped performance. However, when train-
ing the model with spatial loss only, we found that sampling
points on the whole object helped more.

Feature representation complexity. We experimented
with LoRA [4] finetuning of DINOv2 and FiLM [13] lay-
ers for text conditioning. Despite the increased training cost
of LoRA, we did not observe consistent improvements (e.g.
normalized distance increased from 0.172 to 0.181).

Evaluation details. Metrics are computed at fixed pix-
els because the input images are center-cropped (all ob-
jects have similar sizes), making it equivalent to normal-
izing with respect to a percentage of bounding box sizes as
in prior work. For the SD-DINO baseline, we follow their
standard resolutions and scale the input images accordingly.



Model Correspondence Label Transfer Correspondence Discovery

Normalized Dist (↓) PCK@23p (↑) PCK@10p (↑) Best F1@23p (↑) Best F1@10p (↑) AP@23p (↑) AP@10p (↑)
within / across within / across within / across within / across within / across within / across within / across

Synthetic Evaluation Dataset

Chance 0.317 / 0.309 0.162 / 0.166 0.047 / 0.046 0.382 / 0.421 0.163 / 0.178 0.234 / 0.260 0.085 / 0.095

DINO [11] 0.132 / 0.225 0.589 / 0.347 0.283 / 0.126 0.708 / 0.557 0.425 / 0.257 0.555 / 0.352 0.265 / 0.108
SD [15] 0.221 / 0.275 0.423 / 0.278 0.210 / 0.112 0.528 / 0.471 0.295 / 0.220 0.322 / 0.258 0.153 / 0.087
SD-DINO [15] 0.154 / 0.240 0.553 / 0.347 0.284 / 0.141 0.642 / 0.550 0.406 / 0.284 0.443 / 0.324 0.239 / 0.129

CogVLM [14] + DINO 0.126 / 0.188 0.596 / 0.387 0.281 / 0.138 0.840 / 0.651 0.519 / 0.303 0.749 / 0.525 0.362 / 0.160
CogVLM [14] + SD-DINO 0.135 / 0.188 0.578 / 0.404 0.292 / 0.161 0.825 / 0.683 0.554 / 0.368 0.717 / 0.551 0.400 / 0.216
ManipVQA-P [5] + DINO 0.181 / 0.230 0.493 / 0.323 0.232 / 0.113 0.737 / 0.548 0.437 / 0.242 0.608 / 0.387 0.284 / 0.110
ManipVQA-F [5] + DINO 0.234 / 0.278 0.352 / 0.244 0.152 / 0.084 0.650 / 0.508 0.374 / 0.222 0.444 / 0.300 0.193 / 0.081

Ours (functional only) 0.187 / 0.235 0.412 / 0.266 0.154 / 0.084 0.723 / 0.551 0.358 / 0.212 0.617 / 0.412 0.220 / 0.094
Ours (spatial only) 0.128 / 0.217 0.674 / 0.436 0.385 / 0.201 0.686 / 0.597 0.469 / 0.353 0.493 / 0.398 0.295 / 0.198
Ours (full without mask loss) 0.112 / 0.180 0.680 / 0.454 0.377 / 0.203 0.878 / 0.750 0.643 / 0.442 0.823 / 0.662 0.537 / 0.306
Ours (full with mask loss) 0.122 / 0.180 0.655 / 0.451 0.367 / 0.199 0.879 / 0.757 0.645 / 0.443 0.820 / 0.661 0.528 / 0.297

Real Evaluation Dataset

Chance 0.311 / 0.313 0.170 / 0.170 0.044 / 0.046 0.431 / 0.413 0.171 / 0.165 0.262 / 0.243 0.090 / 0.086

DINO [11] 0.130 / 0.230 0.570 / 0.356 0.252 / 0.129 0.734 / 0.542 0.434 / 0.250 0.577 / 0.320 0.275 / 0.095
SD [15] 0.204 / 0.277 0.411 / 0.276 0.192 / 0.106 0.587 / 0.477 0.308 / 0.215 0.355 / 0.263 0.148 / 0.086
SD-DINO [15] 0.151 / 0.243 0.514 / 0.344 0.244 / 0.137 0.679 / 0.544 0.400 / 0.270 0.468 / 0.303 0.224 / 0.116

CogVLM [14] + DINO 0.142 / 0.182 0.544 / 0.407 0.239 / 0.147 0.782 / 0.667 0.465 / 0.314 0.686 / 0.521 0.312 / 0.161
CogVLM [14] + SD-DINO 0.154 / 0.186 0.506 / 0.402 0.234 / 0.158 0.762 / 0.683 0.462 / 0.360 0.618 / 0.540 0.295 / 0.219
ManipVQA-P [5] + DINO 0.148 / 0.222 0.534 / 0.354 0.234 / 0.127 0.719 / 0.563 0.415 / 0.256 0.577 / 0.370 0.260 / 0.112
ManipVQA-F [5] + DINO 0.236 / 0.263 0.405 / 0.279 0.174 / 0.095 0.714 / 0.531 0.412 / 0.239 0.509 / 0.323 0.231 / 0.093

Ours (functional only) 0.179 / 0.206 0.405 / 0.313 0.152 / 0.103 0.730 / 0.627 0.356 / 0.260 0.599 / 0.511 0.199 / 0.132
Ours (spatial only) 0.129 / 0.227 0.631 / 0.421 0.343 / 0.192 0.708 / 0.564 0.470 / 0.316 0.501 / 0.344 0.295 / 0.145
Ours (full without mask loss) 0.122 / 0.161 0.639 / 0.477 0.352 / 0.216 0.835 / 0.756 0.589 / 0.441 0.741 / 0.675 0.469 / 0.304
Ours (full with mask loss) 0.132 / 0.160 0.603 / 0.469 0.321 / 0.208 0.857 / 0.792 0.611 / 0.467 0.773 / 0.716 0.485 / 0.321

Table 1. Quantitative evaluation by within- and across-category pairs. We further break down Table 1 in the main paper by within- and
across-category performance for all the metrics. Additional result for CogVLM + SD-DINO is also included. Off-the-shelf self-supervised
features tend to perform worse at cross-category generalization compared to our full model.

Evaluation with predicted functional part masks. Be-
low, we explain the evaluation protocol for models that in-
volve a functional part mask prediction (e.g., CogVLM [14]
+ DINO, ManipVQA [5] + DINO, and our full model with
mask loss). In label transfer, for each pixel pi1 on image I1,
we restrict its most similar match p

j(i)
2 on I2 to be within

the predicted functional part mask of I2. In correspondence
discovery, predicted part masks are produced for both im-
ages. We restrict matches to only happen between the two
predicted masks and between their complements. Matches
that fall within the two predicted part masks are prioritized
in the ranking explained in Section 5.1 of the main paper.

Dense correspondence visualization. The dense label
transfer visualizations use the ground-truth mask for the
source image but the predicted mask for the target image.
For each pixel on the target image’s functional part mask,
we find its most similar match in the source image’s func-
tional part mask to produce the label transfer color map.

B.3. Computational Costs
Rendering multi-view images on selected Objaverse [1] as-
sets takes one day with four 2080 Ti GPUs. Functional part
pseudo-labeling takes one week on eight A6000 GPUs, as
CogVLM [14] inference is slow and memory-intensive. We
emphasize that rendering and pseudo-labeling are only done
once and scale significantly better than human annotation.
Our model can be trained on a single NVIDIA GeForce
RTX 3090 in ≈ 2 days for 100 epochs. These compu-
tational demands are fairly standard and are justified by
the capability to trade off compute for expensive and time-
consuming human annotation.

C. Additional Quantitative Results

C.1. Within- and Cross-Category Comparison
Since the evaluation dataset contains both within-category
pairs and across-category pairs, we further separate the met-
rics in Table 1 in the main paper into within-category re-
sults and across-category results in Table 1. In general,



all the models and baselines perform better on within-
category cases than on across-category cases. This illus-
trates the inherent difficulty of cross-category generaliza-
tion. In addition, the performance margin between off-the-
shelf self-supervised features and our model is often larger
on the across-category pairs. On average, DINOv2 per-
forms 46.3% worse on cross-category pairs, while ours is
33.3% worse. This serves as evidence that off-the-shelf self-
supervised features struggle more with cross-category gen-
eralization. Last, without any functional part information,
our spatial-only model performs competitively on within-
category pairs on label transfer metrics but is worse on
across-category pairs.

C.2. Scaling Experiments
In this section, we show scaling experiments where we re-
place the backbone in our full model with mask loss with
DINOv2 [11] of different ViT sizes. The results are shown
in Table 2. As the ViT size increases, we generally ob-
serve an improvement in the evaluation metrics. In addi-
tion, when we reduce the stride size from 14 pixels to 7, the
model performance also improves, especially in correspon-
dence discovery. This demonstrates that both higher spatial
resolution and higher backbone capacity can improve the
performance of our approach.

Note that due to computational resource constraints, DI-
NOv2 with ViT-G was only trained for 30 epochs, and ViT-
B with half stride was trained for 80 epochs, while other
models were trained for 100 epochs. Compared to ViT-B,
using ViT-S is ≈ 1.6 times faster, using half stride is ≈ 2.6
times slower, using ViT-L is ≈ 2.1 times slower, and using
ViT-G is ≈ 5.8 times slower.

C.3. Sensitivity Analysis of Loss Weights
We further ablate the spatial and mask loss weights in Ta-
ble 3. Varying λspatial has an effect, but the model does not
appear to be highly sensitive, making it easy to converge on
λspatial = 10 to achieve the best result. On the other hand,
we observe low variance when increasing λmask. The bene-
fits of the mask loss are illustrated in Figure 3.

C.4. Functional Part Prediction Accuracy
Some of the methods we evaluate generate functional
part segmentation predictions. Accordingly, we compare
their segmentation accuracies in Table 4. Specifically,
ManipVQA-P and ManipVQA-F [5] refer to segmentations
produced by ManipVQA using part label prompts and func-
tion name prompts, respectively. For CogVLM [14] on
2D images, predictions are generated from single-image
inputs into CogVLM, aggregated across four trials via K-
Means clustering. These three methods produce bounding
boxes, which are further multiplied with the object masks.
CogVLM [14] with 3D aggregation follows the pipeline il-

lustrated in Figure 3 in the main paper. Since our full model
with mask loss incorporates a functional part mask predic-
tion module, we also evaluate its segmentation performance
as part of this comparison.

To evaluate these methods, we use ground-truth part
masks generated by our evaluation pipeline on both the syn-
thetic Objaverse [1] data and the real HANDAL [3] data.
Specifically, for each (object, function) pair, we
label a 3D bounding box, and any pixel that projects to a
3D point within this bounding box is classified as part of
the functional region. As shown in Table 4, both CogVLM
methods and our learned model have good accuracy. Note
that the pseudo-labeling pipeline can produce very fine-
grained parts like small tips or edges that do not necessarily
align with the human annotations. As such, the main advan-
tage of the 3D aggregation pipeline is illustrated in Figure 1.
In addition, on the real HANDAL data, our model’s predic-
tions perform better than the CogVLM model, which has
state-of-the-art referring expression detection capabilities.

C.5. Ranking Scheme.

We designed our feature similarity and cycle consistency-
based ranking scheme in Section 5.1 of the main text to en-
able strong performance across all methods. To show its im-
pact, we include results from a simpler version using only
feature similarity in Table 5. The ordering is consistent with
the main text, but all methods perform worse. This confirms
that all methods benefit from the improved ranking scheme
and that our findings are not sensitive to this.

D. Additional Qualitative Results

Additional dense label transfer results on the synthetic Ob-
javerse dataset, which further validate the effectiveness of
our approach, are presented in Figure 2. These results high-
light the strong performance of our model in transferring
functional part labels across diverse object categories.

More qualitative discovery results on the synthetic Ob-
javerse dataset are shown in Figure 5, and more qualitative
discovery results on the real HANDAL dataset are shown in
Figure 6. We compare our model with the DINO [11] and
CogVLM [14] + DINO baselines. In line with the conclu-
sion in Section 5.4 of the main text, our model can focus
on the functionally relevant part and produce more spatially
precise correspondences.

Lastly, we show qualitative evidence for the potential
benefits of the optional mask loss in Figure 3. In cases
where the predicted functional part mask is accurate, the
mask loss can prevent incorrect matches outside function-
ally relevant regions.



Model Correspondence Label Transfer Correspondence Discovery

Normalized Dist (↓) PCK@23p (↑) PCK@10p (↑) Best F1@23p (↑) Best F1@10p (↑) AP@23p (↑) AP@10p (↑)

Synthetic Evaluation Dataset

DINOv2 ViT-S 0.171 0.476 0.218 0.768 0.466 0.676 0.325
DINOv2 ViT-B 0.172 0.480 0.223 0.774 0.471 0.684 0.330
DINOv2 ViT-B w/ half stride 0.166 0.494 0.229 0.799 0.508 0.721 0.373
DINOv2 ViT-L 0.164 0.493 0.233 0.789 0.490 0.705 0.351
DINOv2 ViT-G 0.161 0.505 0.239 0.792 0.498 0.711 0.361

Real Evaluation Dataset

DINOv2 ViT-S 0.162 0.494 0.229 0.788 0.481 0.697 0.335
DINOv2 ViT-B 0.153 0.501 0.235 0.808 0.502 0.730 0.360
DINOv2 ViT-B w/ half stride 0.150 0.519 0.247 0.821 0.525 0.751 0.403
DINOv2 ViT-L 0.152 0.515 0.244 0.809 0.514 0.730 0.377
DINOv2 ViT-G 0.146 0.523 0.252 0.808 0.507 0.729 0.370

Table 2. Quantitative evaluation of our model trained with different backbones. In general, performance increases when the vision
transformer backbone becomes larger or when the stride size is reduced.

Loss Weights Correspondence Label Transfer Correspondence Discovery

Normalized Dist (↓) PCK@23p (↑) PCK@10p (↑) Best F1@23p (↑) Best F1@10p (↑) AP@23p (↑) AP@10p (↑)

Synthetic Evaluation Dataset

λspatial = 1, λmask = 1 0.193 0.402 0.161 0.707 0.367 0.601 0.224
λspatial = 5, λmask = 1 0.177 0.458 0.207 0.761 0.445 0.664 0.304
λspatial = 10, λmask = 1 0.172 0.480 0.223 0.774 0.471 0.684 0.330
λspatial = 10, λmask = 5 0.173 0.477 0.222 0.775 0.471 0.685 0.330
λspatial = 10, λmask = 10 0.170 0.478 0.221 0.778 0.470 0.687 0.329

Real Evaluation Dataset

λspatial = 1, λmask = 1 0.169 0.443 0.175 0.759 0.405 0.671 0.260
λspatial = 5, λmask = 1 0.158 0.492 0.223 0.793 0.481 0.713 0.345
λspatial = 10, λmask = 1 0.153 0.501 0.235 0.808 0.502 0.730 0.360
λspatial = 10, λmask = 5 0.155 0.499 0.232 0.804 0.497 0.729 0.359
λspatial = 10, λmask = 10 0.154 0.501 0.231 0.800 0.495 0.719 0.353

Table 3. Quantitative evaluation of varying loss weights. Model performance improves with increasing spatial loss weight (up to 10)
and remains stable with different mask loss weights.

Method IoU on Objaverse IoU on HANDAL

ManipVQA-P [5] 0.453 0.276
ManipVQA-F [5] 0.240 0.146
CogVLM [14] on 2D images 0.656 0.597
CogVLM [14] w/ 3D aggregation 0.635 N/A
Our model prediction 0.628 0.636

Table 4. Quantitative evaluation of functional part segmenta-
tion accuracy. This table compares the accuracy of functional part
segmentation produced by different methods. Both CogVLM [14]
and the predictions of the distilled model demonstrate strong per-
formance in this task. Note that the pipeline described in Figure 3
in the main paper was applied only to the Objaverse dataset; there-
fore, results for CogVLM [14] with 3D aggregation are omitted
for the HANDAL dataset.

E. Discussion

Differences with FunKPoint [6]. The concept of func-
tional correspondence was previously introduced by [6].

Model Best F1@23p (↑) Best F1@10p (↑) AP@23p (↑) AP@10p (↑)

DINO 0.573 0.277 0.376 0.128
CogVLM + DINO 0.672 0.329 0.551 0.184
Ours (full with mask loss) 0.767 0.465 0.679 0.325

Table 5. Correspondence discovery evaluation using only fea-
ture similarity. Compared with Table 1 in the main paper, using
only feature similarity in the ranking scheme achieves worse per-
formance overall but preserves relative performance among meth-
ods.

However, our formulation is different in three key aspects.
First, our problem requires dense functional correspon-

dences to be established, whereas [6] defines five sparse
keypoints. The manual definition of semantic keypoints
at the function type level is not guaranteed to be well-
defined across all object categories. Consequently, we ob-
serve inconsistencies and labeling ambiguities in the sparse
keypoint annotations. In addition, establishing dense cor-
respondences requires fine-grained and precise reasoning
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Figure 2. Additional Label Transfer Dense Visualizations. For each target image (right), our model predicts the functional part mask.
To generate the transferred color map, each pixel in the predicted mask is matched to its best corresponding pixel within the ground-truth
mask of the source image (left) in terms of feature similarity.

Figure 3. Qualitative examples for the impact of mask loss.
Functional part predictions can help avoid incorrect matches out-
side the functional parts in correspondence discovery.

about the structure of object parts, which may make it more
useful for downstream applications like transferring demon-
strations in robotics.

Second, keypoint matches from [6] include both the ob-
ject’s functional part and where the human interacts with
the object. In many cases, like a “bottle” and a “kettle,” the
functionally irrelevant parts cannot be well aligned. As a re-
sult, the key points outside of the functional parts are highly
ambiguous. In addition, where an agent interacts with the
object depends on the end-effector design, introducing com-
plexity and confounding. On the other hand, our formula-
tion introduces a more precise definition based on the con-
cept of functionally equivalent 3D alignments (discussed in
Section 3 of the main text).

Last, the model proposed by Lai et al. [6] relies on hu-
man annotations of sparse keypoints, which inherently lim-
its scalability. In contrast, our approach leverages self-
supervised features and pseudo-labeling, requiring minimal
human input, and offers a significantly more scalable solu-

Dense Correspondence from [37] Dense Correspondence from Ours

Figure 4. Comparison with [6] A visual comparison of dense
correspondence between [6] (left) and our method (right).

tion.
Because of these fundamental differences, our method is

not directly applicable to the dataset in Lai et al. [6]. While
the feature maps from Lai et al. [6] could be used for dense
correspondence, the method is not designed for this and it
qualitatively appears to be relatively coarse. A visual com-
parison is provided in Figure 4.

Limitations. A limitation of our work is the existence
of ambiguity in some cross-category cases. Ambiguity can
arise when an object has multiple parts that can be used
for the same function. For instance, both the tip and side
rim of a spoon can be used for the function “scrape-with.”
On the other hand, ambiguity can also arise due to radial
symmetry: the rim of a cup and the rim of a bowl can be
matched in infinitely many ways. As such, a compelling
direction for future work can be developing a probabilistic
model to handle the multi-modal nature of the problem and
use additional conditioning to resolve such ambiguities.
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apply torque-with cut-with

dig-withdig-with

hang-onto pick up-with

pierce-with poke-with

pry-withpour-with
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Figure 5. Additional Correspondence Discovery Results on Objaverse Evaluation Dataset. We show more qualitative examples of
correspondence discovery on the synthetic Objaverse evaluation dataset, comparing our model against baselines.

Ours CogVLM+DINO DINO Ours CogVLM+DINO DINO

dig-with lift-with

lift-with pierce-with

pierce-with pour-with

pour-with pull-with

scrape-with scoop-with

Figure 6. Additional Correspondence Discovery Results on HANDAL Evaluation Dataset.



System Prompt:
You are an assistant trying to help a robot figure out 
what objects can be used to perform certain actions. The 
objects should be hand-held and unpowered, rigid, 
unarticulated. The object shape should be what allows it 
to perform its function. 

Given an input that is an (action, preposition) pair, 
output two lists: First output at least 20 object names 
that are commonly used to perform that action, and at 
least 20 object names that are not very commonly used to 
perform an action but the action could be done with some 
improvisation.

Example inputs and outputs. Format your output as a json 
list.

Example 1:
input: "pour, with"
output:{
    "common": ["bottle", "cup", "wine glass", "watering 
can", "teapot", "pitcher", "jug", "saucepan", "measuring 
cup", "drinking flask"]
    "uncommon": ["erlenmeyer flask", "lab flask", "bota 
bag", "bailer shell", "drinking horn"]}
 
Example 2:
input: "pound, with"
output:{
     "common":["hammer", "mallet", "meat tenderizer", 
"pestle", "sledgehammer", "rubber paver mallet"]
     "uncommon":["axe", "knife", "boot", "rock", 
"wrench"]}

Input: cut-with
Output: {
     "common": ["knife","scissors", "box cutter", "razor 
blade", "chef's knife", "paring knife", "utility knife", 
"carving knife", "bread knife", "cleaver", "hacksaw", 
"chisel", "guillotine", "paper cutter", "exacto knife", 
"shears", "pruning shears", "scalpel", "clipper", "lawn 
mower blade"],
     "uncommon": ["glass cutter","wire cutter", "pizza 
cutter", "cookie cutter", "plane blade", "credit card", 
"sharp stone", "broken glass", "metal spatula", "saw 
blade", "ceramic shard", "guitar string", "fishing 
line", "shard of mirror", "dental floss", "key", "ice 
skate blade", "shovel edge", "hoe","axe edge"]}

Input:”dig-with”
Output:"dig-with": {
 "common": ["shovel", "trowel", "spade", "pickaxe", 
"hoe", "mattock", "posthole digger", "scoop", "hand 
shovel", "garden fork", "edger", "excavator scoop", 
"dibble", "ice auger", "clam shovel", "snow shovel", 
"coal shovel", "drain spade", "trenching shovel", 
"folding shovel"],
 "uncommon": ["spoon", "stick", "piece of glass", 
"fork", "knife", "old credit card", "can lid", "metal 
rod", "plastic cup", "ruler", "pen cap", "toy shovel", 
"saucepan", "bottle cap", "wooden dowel", "scalpel", 
"chopstick", "brush handle", "car key", "phone case"]

Figure 7. Our GPT-4 [10] prompting procedure for creating object
categories given a list of functions.

System Prompt: Here are your instructions for the rest 
of the chat: Respond as if you are a human expert giving 
simplifying instructions to a robot learning to interact 
with the world by identifying object parts that 
correspond to verbs. We want to know what area of the 
object can be used to perform this action. We do not 
want to know the part that needs to be held or 
interacted by a human to do this action. Respond with a 
list of part names, each with a sentence describing the 
part appearance in ``name - description" format.

When answering user questions, carefully consider the 
following 4 examples. Each example contains a question, 
a good answer, and a bad answer. The bad answers 
generally contain parts that the human explicitly 
interact with. Be sure to avoid bad answers.

Question: What are the names of object parts of a 
“knife" that can be used to perform the action 
“cut-with"? Respond with only a bulleted list of single 
word responses paired with short descriptions.

Good Answer: 
- Blade - the flat, sharp part used for cutting. 
- Edge - The sharpened side of the blade that slices 
through materials.

Bad Answer:
- Handle - the part where you grip the knife.
--------------------------------------------------------
Prompt: What are the names of object parts of a “dagger" 
that can be used to perform the action “pierce-with"?
Output: 
   - Point - The sharp, tapered end of the dagger used 
for piercing.
   - Blade - The flat, sharp part used for slicing or 
stabbing.
--------------------------------------------------------
Prompt: What are the names of object parts of a “trowel" 
that can be used to perform the action “dig-with"?
Output:
   - Blade - The flat, pointed part used for digging 
into soil.
   - Tip - The sharp end of the blade which helps 
penetrate the ground.

Figure 8. Overview of our strategy for prompting GPT-4 [10] to
obtain functional part names.

System Prompt: You will be provided with a brief caption 
or description of a 3D asset. Your task is to generate 
the most concise, accurate, and contextually appropriate 
object name based on the given description. The object 
name should reflect the core identity of the asset, 
avoiding overly specific labels. Output only the object 
name.
--------------------------------------------------------
Input Caption: “a screwdriver with a blue wooden handle”
Prompt: The caption is 'a screwdriver with a blue wooden 
handle'. Based on this description, provide the most 
fitting and concise object name.
Output: screwdriver
--------------------------------------------------------
Input Caption: ”a white and blue coffee mug with a 
label, featuring a blue lid and a yellow and white 
design, resembling a honey jar and a plastic container 
with the word 'Ulma' on it.”
Prompt: The caption is 'a white and blue coffee mug with 
a label, featuring a blue lid and a yellow and white 
design, resembling a honey jar and a plastic container 
with the word 'Ulma' on it.'. Based on this description, 
provide the most fitting and concise object name.
Output: Coffee mug

Figure 9. Summarizing Caption3D [8] captions into nouns with
Llama3 [2]. The LLM is capable of finding the noun that is the
main subject of the caption.



Function Objects
scrape with knife, screw, card, dagger, pen, coin, pencil, screwdriver, shovel, key, spoon, needle, scissors, pickaxe, fork,

spatula, CD, hook, ruler, credit card, pitchfork, lid, pin, comb, awl, cleaver, trowel, razor blade, nail, toothpick,
hockey stick, machete, rake, paddle, paper clip, license plate, hoe, corkscrew, box cutter, chisel, brush, grater,
stylus, scalpel, file, letter opener, squeegee, peeler

press with smartphone, bottle, shoe, stone, bowl, mug, water bottle, jug, teapot, hammer, bucket, cup, jar, book, plate, candle
holder, tray, brick, pot, coffee pot, boot, flask, spoon, cutting board, pan, mallet, spatula, glass, kettle, plank, tablet,
credit card, can, lid, ladle, CD case, saucepan, stamp, clipboard, paddle, pestle, hoe, meat tenderizer

pound with axe, bottle, shoe, bowl, water bottle, hammer, jar, pipe, candle holder, flashlight, wrench, brick, pot, baseball
bat, screwdriver, dumbbell, shovel, boot, remote control, spoon, pan, mallet, pickaxe, spatula, bowling pin, log,
crowbar, can, ladle, rolling pin, gavel, cleaver, hockey stick, baton, saucepan, cricket bat, club, hairbrush, pestle,
meat tenderizer

pierce with screw, knife, sword, dagger, pen, pencil, drill, screwdriver, needle, scissors, pickaxe, stilettos, fork, hook, pitchfork,
pin, spear, fish hook, dart, awl, chopsticks, harpoon, nail, toothpick, machete, skewer, golf tee, corkscrew, box
cutter, chisel, stylus, scalpel, safety pin, letter opener

poke with pipe, pencil, stick, pliers, screwdriver, key, rod, spoon, needle, pickaxe, fork, toothbrush, branch, pin, paintbrush,
awl, chopsticks, nail, coat hanger, dowel, baton, antenna, toothpick, skewer, crayon, matchstick, tweezers, tongs,
drumstick, stylus, stirrer, letter opener

mix with knife, pen, pencil, screwdriver, rod, spoon, fork, spatula, toothbrush, branch, ruler, ladle, awl, chopsticks, baton,
straw, marker, skewer, paddle, brush, tongs, whisk, scalpel, stylus, stirrer, letter opener

pour with mug, bottle, shoe, bowl, jug, water bottle, teapot, bucket, cup, jar, hat, pot, coffee pot, oil can, flask, pan, watering
can, hard hat, kettle, glass, can, ladle, saucepan, decanter, coconut shell

cut with axe, knife, sword, dagger, key, scissors, spatula, CD, ruler, credit card, saw, cleaver, razor blade, machete, box
cutter, ice skate, chisel, scalpel, pizza cutter, letter opener

scoop with mug, shoe, bowl, jug, seashell, bucket, cup, hat, pot, shovel, flask, spoon, pan, hard hat, glass, ladle, trowel,
saucepan, dustpan, coconut shell

roll onto cylinder, mug, bottle, water bottle, cup, jar, pen, pipe, flashlight, glass, bowling pin, log, can, rolling pin, battery,
lipstick, dowel, marker, roller

dig with knife, stick, screwdriver, shovel, key, spoon, pickaxe, fork, ruler, awl, trowel, chopsticks, nail, paddle, hoe, dustpan,
chisel, plow

sweep with card, shovel, fork, spatula, broom, credit card, pitchfork, trowel, hockey stick, feather, rake, paddle, hairbrush,
hoe, mop, brush, squeegee

pry with knife, dagger, wrench, screwdriver, shovel, key, spoon, pickaxe, fork, spatula, ruler, crowbar, chopsticks, can
opener, bottle opener, corkscrew, chisel

lift with knife, seashell, plate, tray, shovel, cutting board, spoon, fork, spatula, ruler, lid, cleaver, trowel, paddle, clipboard,
dustpan

pull with hammer, L-bracket, hook, crowbar, fish hook, coat hanger, harpoon, carabiner, hoe, grappling hook, grabber
spread with knife, card, spoon, spatula, ruler, credit card, cleaver, trowel, brush
brush with broom, toothbrush, paintbrush, feather, hairbrush, mop, brush
write with pen, pencil, paintbrush, lipstick, marker, crayon, stylus
hang onto mug, curtain ring, hook, fish hook, coat hanger, carabiner, paper clip
peel with knife, dagger, box cutter, chisel, scalpel, peeler
pick up with pliers, chopsticks, tweezers, tongs, grabber
wedge with axe, wedge, spatula, chisel
apply torque with wrench, pliers, grabber
sift with basket, strainer, colander

Table 6. The list of functions and the associated objects in our dataset’s function/object taxonomy.



axe 213 pencil 91 broom 26 razor blade 12 paper clip 8
knife 200 brick 85 CD 25 nail 12 license plate 8
screw 200 pot 80 glass 24 chopsticks 12 hoe 8
card 200 stick 78 kettle 24 harpoon 12 corkscrew 8
smartphone 200 drill 73 bowling pin 24 coat hanger 12 box cutter 8
bottle 200 pliers 71 toothbrush 24 dowel 12 pestle 8
shoe 200 baseball bat 66 plank 23 lipstick 12 matchstick 8
stone 200 screwdriver 56 hook 22 toothpick 11 tweezers 8
bowl 200 dumbbell 54 tablet 22 hockey stick 11 ice skate 8
mug 200 coffee pot 53 log 22 machete 11 dustpan 8
water bottle 200 shovel 51 branch 22 saucepan 11 mop 8
jug 200 L-bracket 51 ruler 21 baton 11 colander 8
cylinder 200 oil can 50 credit card 20 antenna 11 chisel 7
teapot 199 key 49 crowbar 19 carabiner 11 brush 7
hammer 199 wedge 48 pitchfork 18 stamp 10 tongs 7
sword 199 boot 47 can 18 cricket bat 10 grater 6
seashell 192 remote control 47 lid 17 skewer 10 stylus 6
bucket 187 flask 41 ladle 16 golf tee 10 scalpel 6
dagger 183 rod 41 rolling pin 16 crayon 10 drumstick 6
cup 181 spoon 39 saw 16 straw 10 whisk 6
jar 175 cutting board 39 pin 15 marker 10 grappling hook 6
book 173 pan 35 CD case 15 roller 10 safety pin 5
basket 163 watering can 34 spear 15 feather 10 grabber 5
pen 160 needle 33 gavel 14 strainer 10 file 4
plate 158 scissors 33 fish hook 14 rake 9 stirrer 4
coin 140 hard hat 33 battery 14 paddle 9 pizza cutter 4
candle holder 126 mallet 32 comb 13 clipboard 9 letter opener 3
pipe 126 curtain ring 32 awl 13 club 9 squeegee 2
hat 118 pickaxe 29 cleaver 13 hairbrush 9 peeler 2
tray 114 stilettos 29 dart 13 decanter 9 meat tenderizer 2
flashlight 114 fork 27 paintbrush 13 can opener 9 coconut shell 2
wrench 112 spatula 27 trowel 12 bottle opener 9 plow 1

Table 7. Categories in our curated dataset and the number of assets in each category.
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Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez,
Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al.
Dinov2: Learning robust visual features without supervision.
arXiv preprint arXiv:2304.07193, 2023. 3, 4

[12] Nobuyuki Otsu et al. A threshold selection method from
gray-level histograms. Automatica, 11(285-296):23–27,
1975. 2

[13] Ethan Perez, Florian Strub, Harm de Vries, Vincent Du-
moulin, and Aaron Courville. Film: Visual reasoning with a
general conditioning layer, 2017. 2

[14] Weihan Wang, Qingsong Lv, Wenmeng Yu, Wenyi Hong, Ji
Qi, Yan Wang, Junhui Ji, Zhuoyi Yang, Lei Zhao, Xixuan
Song, et al. Cogvlm: Visual expert for pretrained language
models. arXiv preprint arXiv:2311.03079, 2023. 1, 2, 3, 4,
5

[15] Junyi Zhang, Charles Herrmann, Junhwa Hur, Luisa Pola-
nia Cabrera, Varun Jampani, Deqing Sun, and Ming-Hsuan
Yang. A tale of two features: Stable diffusion complements
dino for zero-shot semantic correspondence, 2023. 3


	Training Data Generation
	Function and Object Taxonomy
	Functional Part Description Generation
	Objaverse Dataset Filtering
	CogVLM Prompting and Aggregation

	Additional Training and Evaluation Details
	Ground-Truth Generation
	Additional Technical Details
	Computational Costs

	Additional Quantitative Results
	Within- and Cross-Category Comparison
	Scaling Experiments
	Sensitivity Analysis of Loss Weights
	Functional Part Prediction Accuracy
	Ranking Scheme.

	Additional Qualitative Results
	Discussion

