
Supplementary Material — A Linear N-Point Solver for Structure and Motion
from Asynchronous Tracks

1. Appendix

1.1. Explicit Matrix Formulas

In the main text, we discuss the use of matrices
MA,MB ,MC defined via

A⊺A︸ ︷︷ ︸
.
=M

x =

[
MA MB

M⊺
B MD

] [
P1:M

v

]
= 0(3M+3)×1, (1)

where A is defined via


F1 G1

F2 G2

. . .
...

FM GM


︸ ︷︷ ︸

.
=A∈R3N×(3M+3)


P1

P2

...
PM

v


︸ ︷︷ ︸
.
=x∈R3M+3

= 03N×1 (2)

and each Fi,Gi is defined as
[
f ′ij
]
× −t′ij

[
f ′ij
]
×

...
...[

f ′iNi

]
× −t′iNi

[
f ′iNi

]
×


︸ ︷︷ ︸

.
=
[
Fi Gi

]
∈R3Ni×6

[
Pi

v

]
= 03Ni×1 (3)

We thus see that

MA =


F⊺

1F1

F⊺
2F2

. . .
F⊺

MFM

 (4)

MB =


F⊺

1G1

F⊺
2G2

...
F⊺

MGM

 (5)

MD =

M∑
i=1

G⊺
i Gi (6)

where

F⊺
i Fi = −

Ni∑
j=1

[f ′ij]
2
× (7)

F⊺
i Gi =

Ni∑
j=1

t′ij [f
′
ij]

2
× (8)

G⊺
i Gi− =

Ni∑
j=1

t′ij
2
[f ′ij]

2
× (9)

share significant computation due to the products [f ′ij]
2
×. Fi-

nally, computing the Shur complement

B = MD −M⊺
BM

−1
A MB (10)

we find that

B =

M∑
i=1

G⊺
i Gi −G⊺

i Fi(F
⊺
i Fi)

−1F⊺
i Gi (11)

1.2. Rank of B
Assuming a full rank of Fi, we know that each Gi has full
rank, since Gi = diag(t′i1I3×3, ..., t

′
iNi

I3×3)Fi, and the di-
agonal matrix has full rank for t′ij ̸= 0. Thus, assume given
the SVD of Fi = UiΣiV

⊺
i . Due to the full rank we have

that Σ−1
i exists.

Thus, the above formula for B becomes

B =

M∑
i=1

G⊺
i Gi −G⊺

i UiU
⊺
i Gi (12)

which can be factored into

B = G⊺ (I3N×3N −UU⊺)G (13)

where

G =

G1

...
GM

 U =

U1

. . .
UM

 (14)

1

To check that B has full rank we assume a solution v̂ to
Bv̂ = 03×1, and then need to enforce that it must be zero.
Then

G⊺ (I3N×3N −UU⊺)Gv̂ = 03×1 (15)

However, since G⊺ has full rank, this implies

(I3N×3N −UU⊺)Gv̂ = 03×1 (16)

in other words Gv̂ must be in the null space of I3N×3N −
UU⊺. This null space is exactly the column space of U, i.e.
vectors of the form Uλ with λ ∈ R3M . So

Gv̂ = Uλ (17)

or equivalently for each block

Giv̂ = Uiλi (18)

which can be converted into the equation

[
G −Ui

] [v̂
λi

]
= 03N×1 (19)

If any of the matrices on the left-hand side have full rank,
this implies that v̂ = 03×1, and thus that B has full rank.

1.3. Connection to Epipolar Constraint
Here we show that the point incidence relation is related to
the epipolar constraint used in the well-known 5-point or
8-point algorithms. This constraint is formed from point
correspondences xij across two views at times t1, t0. This
means in our setting, for each 3D point we have Ni = 2, and
j = 0, 1. Moreover, all point in one view are synchronized,
i.e. ti0 = t0 and ti1 = t1 for all i = 1, ...,M . We are left
with two sets of equations

[f ′i0]× Pi − t′0 [f
′
i0]× v = 03×1 (20)

[f ′i1]× Pi − t′1 [f
′
i1]× v = 03×1 (21)

where t′0 = t0 − ts and t′1 = t1 − ts. Without loss of
generality we will set ts = t0 so that t′0 = 0, t′1 = t1 − t0.
Introducing translation t

.
= v(t1 − t0) yields

[f ′i0]× Pi = 03×1 (22)

[f ′i1]× Pi − [f ′i1]× t = 03×1 (23)

Next we left-multiply the second set of equations by f ′
⊺
i0

yielding

f ′
⊺
i0 [f

′
i1]× Pi − f ′

⊺
i0 [f

′
i1]× t = 0 (24)

We cycle both triple products to get

f ′
⊺
i1 [Pi]× f ′i0︸ ︷︷ ︸

=0

−f ′
⊺
i1 [t]× f ′i0 = 0 (25)

The first term is 0 due to [f ′i0]× Pi = 03×1 and we are thus
left with

f ′
⊺
i1 [t]× f ′i0 = 0 (26)

Next we substitute f ′i0 = I3×3fi0 and f ′i1 = R(t1)fi0. We
call R .

= R(t1), then

f⊺i1 R
⊺ [t]×︸ ︷︷ ︸
.
=E

fi0 = 0 (27)

The underlined matrix is also called the essential matrix,
and the above constraint is exactly the epipolar constraint.

1.4. Connection to Line Solver
The line solver in [1] makes the assumption that points Pi

lie on a line positioned at unit depth. We can thus write the
position of Pi as a linear combination of unit vectors eℓ1 and
eℓ3 as

Pi = pi,1e
ℓ
1 − eℓ3. (28)

Here eℓ3 points from the closest point on the line to the ori-
gin, and eℓ1 points in the direction of the line. Further define
the unit vector eℓ2 = eℓ3×eℓ1. We start off by multiplying the
original incidence relation from the left with eℓ1

⊺ yielding

eℓ1
⊺
[fij]×Pi − t′ije

ℓ
1

⊺
[fij]×v = 0. (29)

Next, we use a⊺[b]×c = c⊺[a]×b to arrive at

f⊺ije
ℓ
2 − t′ijf

⊺
ij(e

ℓ
1 × v) = 0. (30)

Finally, we express the linear velocity in the basis eℓ1, e
ℓ
2, e

ℓ
3,

i.e.
v = uxe

ℓ
1 + uye

ℓ
2 + uze

ℓ
3 (31)

inserting above, and expanding the cross product we have
that

f⊺ije
ℓ
2 + t′ijf

⊺
ij(uze

ℓ
2 − uye

ℓ
3) = 0. (32)

This is exactly Eq. 6 in [1], which demonstrates that the line
solver is a special case of the point solver described here.

1.5. Arbitrary Taylor Expansions
In what follows, we will expand the camera motion as an S
order Taylor Series:

R(tij) ≈ exp

([
S∑

s=1

ω(s)t′
s
ij

s!

]
×

)
(33)

p(tij) ≈
S∑

s=1

v(s)t′
s
ij

s!
. (34)

Here we denote ω(s) the s order angular rate, and v(s) the
s order linear rate. Again we will focus on recovering the
linear rates, and leave the angular rates as given. Inserting

2

these definitions into the incidence relations yields the lin-
ear system

[
f ′ij
]
× Pi −

S∑
s=1

t′
s
ij

s!

[
f ′ij
]
× v(s) = 03×1 (35)

We stack all such constraints that involve the point Pi into
a single system of equations.

[f ′i1]× −t′i1 [f
′
i1]× . . . − t′Si1

S!
[f ′i1]×

...
...

. . .
...[

f ′iNi

]
× −t′iNi

[
f ′iNi

]
× . . . −

t′SiNi
S!

[
f ′iNi

]
×


︸ ︷︷ ︸

.
=

[
Fi G

(1)
i . . . G

(S)
i

]
∈R3Ni×(3+3S)


Pi

v(1)

...
v(S)

 = 03Ni×1

(36)
where G

(s)
i ∈ R3Ni×3. For S = 1 we recover the old case.

Denoting

v
.
=

v
(1)

...
v(S)

 Gi
.
=
[
G

(1)
i . . . G

(S)
i

]
(37)

we arrive at the same algorithm as before. However, cru-
cially, A ∈ R3N×(3M+3S) and the Shur complement re-
duces A⊺A to a matrix B ∈ R3S×3S . The solution duality
and degeneracy remains the same. However, the minimality
discussion needs to be adjusted since more unknowns are
now introduced.
Minimality: The total system has 2N constraints, with
3M + 3S − 1 unknowns (including scale ambiguity). This
means that

N ≥
⌈
3M + 3S − 1

2

⌉
(38)

At the same time, stability in the solver requires

N ≥ 2M (39)

we will try to find out when a minimal system arises, i.e.
when

⌈
3M+3S−1

2

⌉
= 2M . We will treat two cases:

Case 1: Let h .
= 3M + 3S − 1 be odd with h = 2k + 1

and k = h−1
2 for some k, then the left side of the above

equation becomes⌈
h

2

⌉
= k + 1 (40)

=
3M + 3S − 2

2
+ 1 (41)

=
3M + 3S

2
(42)

Setting this equal to 2M yields

M = 3S (43)

We thus find that configurations (S,M) = (s, 3s) for s =
1, 2, ... yield minimal systems. Setting N = 2M = 6s with
Ni = 2 yields a total of 12s equations with 12s unknowns
coming from 3s 3D points and 6s observations.
Case 2: Let h .

= 3M +3S − 1 be even, so that h = 2k and

⌈
h

2

⌉
= k (44)

=
3M + 3S − 1

2
. (45)

Setting this equal to 2M we have that

M = 3S − 1. (46)

As a result, configurations (S,M) = (s, 3s − 1) for s =
1, 2, ... also yield minimal systems. In particular, setting
N = 2M with Ni = 2 we have a system of 12s − 4 equa-
tions with 12s−4 unknowns coming from 3s−1 3D points,
and 6s− 2 observations.

Checking the above equations for S = 1 recovers the
minimal 4 and 6 point algorithms discussed in the main text.

1.5.1. Experiments with Acceleration Aware Solver
To extend our methodology to acceleration-aware motion
estimation, we conducted simulation experiments as de-
scribed in Sec.4.1 with a 1-second time window. The re-
sults shown in Fig. 2 and Fig. 3 reveal that introducing
acceleration parameters (adding three degrees of freedom)
systematically amplifies the solver’s noise sensitivity. No-
tably, acceleration estimation exhibits 3-4 times higher er-
ror susceptibility than velocity under identical noise con-
ditions. This effect arises because the acceleration term’s
coefficient scales quadratically with the timestamp in the
motion model. Nevertheless, it can be mitigated by fusing
IMU acceleration data to bootstrap initial velocity estima-
tion.

1.6. Extending the Acceleration-aware Solver

The above formulation for S = 2 expands the camera mo-
tion up to acceleration yielding the incidence relation

[
f ′ij
]
× Pi − t′ij

[
f ′ij
]
× v − 1

2
t′
2
ij

[
f ′ij
]
× a = 03×1 (47)

Instead of solving for the unknown a we can assume it given
by an IMU (which we already use to estimate angular ve-
locity). For simplicity, we assume it to be constant over the
time interval. We thus find that our system transforms into
an in-homogeneous system :

[
f ′ij
]
× Pi − t′ij

[
f ′ij
]
× v =

1

2
t′
2
ij

[
f ′ij
]
× a (48)

3

stacking these equations for one track yields [f ′i1]× −t′i1 [f
′
i1]×

...
...[

f ′iNi

]
× −t′iNi

[
f ′iNi

]
×


︸ ︷︷ ︸

.
=
[
Fi Gi

]
∈R3Ni×6

[
Pi

v

]
=


1
2 t

′2
i1 [f

′
i1]× a

...
1
2 t

′2
iNi

[
f ′iNi

]
× a


︸ ︷︷ ︸

.
=bi∈R3Ni×1

(49)
and stacking these equations for each point we get

F1 G1

F2 G2

. . .
...

FM GM


︸ ︷︷ ︸

.
=A∈R3N×(3M+3)


P1

P2

...
PM

v


︸ ︷︷ ︸
.
=x∈R3M+3

=

 b1

...
bM


︸ ︷︷ ︸
.
=b∈R3N×1

(50)
multiplying from the left with A⊺ we have the system

A⊺A︸ ︷︷ ︸
.
=M

x =

[
MA MB

M⊺
B MD

] [
P1:M

v

]
= A⊺b︸︷︷︸

.
=c

=

[
cA
cB

]
, (51)

where we now define c ∈ R(3M+3)×1 with cA ∈ R3M×1

and cB ∈ R3×1. Explicit formulas for these are

cA =

 F⊺
1b1

...
F⊺

MbM

 cB =

M∑
i=1

G⊺
i bi (52)

where

F⊺
i bi = −1

2

Ni∑
j=1

t′
2
ij

[
f ′iNi

]2
× a (53)

and

G⊺
i bi =

1

2

Ni∑
j=1

t′
3
ij

[
f ′iNi

]2
× a (54)

Applying the Schur-complement trick to this system yields
the following system for v

Bv = cB −M⊺
BM

−1
A cA︸ ︷︷ ︸

.
=d

(55)

where we have defined B previously, and we now have in-
troduced d ∈ R3×1 with the following explicit formula

d =

M∑
j=1

G⊺
i bi −G⊺

i Fi(F
⊺
i Fi)

−1F⊺
i bi (56)

Solving for v requires simply inverting the matrix, yielding

v̂ = B−1d (57)

and back substitution to get the 3D points yields

P̂i = (F⊺
i Fi)

−1F⊺
i (bi −Giv̂) (58)

It is important to note that, having taken the acceleration
into account adds two qualitative differences between our
solution to the previous cases: First, absolute scale suddenly
becomes observable, meaning that the recovered v̂, P̂i are
in meters. Second, our method no longer has multiple solu-
tions, making the depth check unnecessary.

References
[1] Ling Gao, Daniel Gehrig, Hang Su, Davide Scaramuzza, and

Laurent Kneip. A linear n-point solver for line and motion es-
timation with event cameras. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR),
2024. 2

4

0.0 0.5 1.0 1.5 2.0
Pixel Noise (px)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Ve
lo

ci
ty

 E
rr

or
 (d

eg
)

5 feats + 5 obs
20 feats + 20 obs
100 feats + 50 obs

0 5 10 15 20
Time Noise (ms)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
Ve

lo
ci

ty
 E

rr
or

 (d
eg

)
5 feats + 5 obs
20 feats + 20 obs
100 feats + 50 obs

0 2 4 6 8
Rotation Noise (deg/s)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Ve
lo

ci
ty

 E
rr

or
 (d

eg
)

5 feats + 5 obs
20 feats + 20 obs
100 feats + 50 obs

0.0 0.5 1.0 1.5 2.0
Pixel Noise (px)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

A
cc

el
 E

rr
or

 (d
eg

)

5 feats + 5 obs
20 feats + 20 obs
100 feats + 50 obs

0 5 10 15 20
Time Noise (ms)

0

10

20

30

40

50

60

A
cc

el
 E

rr
or

 (d
eg

)

5 feats + 5 obs
20 feats + 20 obs
100 feats + 50 obs

0 2 4 6 8
Rotation Noise (deg/s)

0

10

20

30

40

50

60

A
cc

el
 E

rr
or

 (d
eg

)
5 feats + 5 obs
20 feats + 20 obs
100 feats + 50 obs

Figure 1. The robustness of acceleration-aware point solver against pixel noise (left) and timestamp jitter (middle) and rotation (right)
.

5

3 4 5 10 20 30 50 100 200 1000
Number of Tracks

0

2

4

6

8

10

Ve
lo

ci
ty

 E
rr

or
 (d

eg
)

0.5px + 0.5ms + 1deg/s
1px + 1ms + 2deg/s

3 4 5 10 15 20 25 30 40 50
Number of Observations

0

2

4

6

8

10

Ve
lo

ci
ty

 E
rr

or
 (d

eg
)

0.5px + 0.5ms + 1deg/s
1px + 1ms + 2deg/s

3 4 5 10 20 30 50 100 200 1000
Number of Tracks

0

10

20

30

40

50

60

70

A
cc

el
er

at
io

n
E

rr
or

 (d
eg

)

0.5px + 0.5ms + 1deg/s
1px + 1ms + 2deg/s

3 4 5 10 15 20 25 30 40 50
Number of Observations

0

10

20

30

40

50

60

70

A
cc

el
er

at
io

n
E

rr
or

 (d
eg

)

0.5px + 0.5ms + 1deg/s
1px + 1ms + 2deg/s

Figure 2. Analysis of acceleration-aware point solver on the number of feature tracks (left) and observations (right) under different
combined noise level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Time Window (s)

0

20

40

60

80

Ve
lo

ci
ty

 E
rr

or
 (d

eg
)

1px + 1ms + 2deg/s
2px + 2ms + 5deg/s

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Time Window (s)

20

30

40

50

60

70

80

90

100

A
cc

el
 E

rr
or

 (d
eg

)

1px + 1ms + 2deg/s
2px + 2ms + 5deg/s

Figure 3. Analysis of the impact of time window on acceleration-aware solver under different noise level.

6

