
FLSeg: Enhancing Privacy and Robustness in Federated Learning under

Heterogeneous Data via Model Segmentation

Supplementary Material

A. FLSeg process

The overall workflow of FLSeg is illustrated in Algorithm 1.

For simplicity, some parameters (e.g., learning rate η) are

omitted to focus on the core process. In FLSeg training, the

mode of segmentation is fixed and publicly known to ensure

consistency between Exchange and Aggregation. The

personalized model vt+1
i obtained from LocalTraining

is used solely for local tasks and does not participate in ag-

gregation, whereas updates to the global model wt+1
i are

involved in subsequent Exchange and Aggregation.

Algorithm 1: FLSeg Process

Input: Initial model w0, training rounds T , the

mode of segmentations {γ(1), . . . , γ(d)}
Output: Model after T training round wT

1 S initializes (pkS , skS) and broadcasts pkS to ci;

2 for t← 0 to T − 1 do

3 S broadcasts wt to all client;

4 for each client ci parallel do

5 vt+1
i , wt+1

i ← LocalTraining(wt);

6 perform Exchange(wt+1
i , cj) and upload

mixed model to S;

7 S computes wt+1 ←

Aggregation({(wt+1
i)mix}i∈[n],

{γ(1), . . . , γ(d)});

8 return wT

B. Reputation System

To test the performance of the reputation system in defend-

ing against Byzantine attacks, we conducted experiments

on CIFAR-10 using Min-Max attacks, with 40% of the par-

ticipants being attackers. The results are shown in Figure

B.1.

We recorded the similarity scores for all uploaded mod-

els calculated by the server during the first round of aggre-

gation, with the results shown in Figure B.1 (Left). It can

be observed that the mixed models resulting from Segment

Exchanges between honest parties have significantly higher

similarity scores compared to those exchanged with attack-

ers. This is because the segments of malicious clients will

deviate from the benchmark, resulting in lower similarity

scores.

Honest clients that exchange segments with malicious

0 20 40 60 80 100

����

����

���

0

50

S
im

il
ar

it
y
 S

co
re

s

Client ID

 Attacker

 Corrupted Client

 Honest Client

0 20 40 60 80 100

����

0.0

0.2

0.4

0.6

A
v
er

ag
e

R
ep

u
ta

ti
o
n

s

Client ID

 Honest Client

 Attacker

Figure B.1. Left: Similarity scores calculated by the server during

the first round of aggregation. Right: Average reputation of each

user at the end of training.

users will receive low similarity scores, which will reduce

the reputation of the malicious clients. To verify this, We

recorded the average reputation of each client at the end of

training, with the results shown in Figure B.1 (Right). The

results show that the average reputation of honest clients

is much higher than that of malicious clients in all clients’

reputation lists. This means that malicious clients will find

it increasingly difficult to match with honest clients during

the Segment Exchange phase.

C. Computational Time Complexity and Over-

head

In Section 5.2, we compared the computational efficiency of

FLSeg with privacy-preserving FL methods in terms of pri-

vacy protection. Here, we provide the complexity analysis

and experimental setup for the comparison methods.

C.1. Complexity

SecAgg [4]. The client-side computational complexity is

O(n2 + ℓn), including O(n) for key agreement with all

clients, O(ℓn) for pairwise mask generation for the model

with all other clients, and O(n2) for generating t-out-of-

n Shamir secret shares and communicating with all clients.

On the server side, the computational complexity isO(n2ℓ),
comprising O(n2) for reconstructing the mask seeds of

dropped users from the secret shares submitted by surviv-

ing users using Lagrange basis polynomials, and O(n2ℓ)
for removing masks from each user’s masked input.

Bell et al. [2] and ACORN [1]. These methods share the

same privacy protection mechanism, with ACORN adding

zero-knowledge proofs (ZKP) to restrict gradient norms

for robustness. Since ZKP primarily ensures robustness

Dataset FEMNIST CIFAR-10 CIFAR-100

Architecture MLP CNN SqueezeNet

Parameters 84762 62006 781156

Communication rounds 100 100 400

Local epochs 5 5 1

Optimizer SGD SGD SGD

Batch size 64 64 64

Learning rate 0.1 0.1 0.1

Momentum 0.5 0.5 0.5

Weight decay 0.0001 0.0001 0.0001

Learning rate decay No No No

Gradient clipping Yes Yes Yes

Clipping norm 2 2 2

Table C.1. Default experimental settings for FEMNIST, CIFAR-10 and CIFAR-100

rather than privacy, we exclude its overhead from ACORN’s

cost analysis. The client-side computational complexity is

O(log2 n + ℓ log n), consisting of O(log n) for key agree-

ment with neighbors, O(ℓ log n) for pairwise mask gener-

ation, and O(log2 n) for t-out-of-n Shamir secret sharing.

The server-side computational complexity is O(n(log2 n+
ℓ log n)), includingO(n log2 n) for reconstructing pairwise

masks for dropped clients, O(nℓ log n) for reconstructing

model masks for non-dropped clients, and O(nℓ) for col-

lecting, verifying, and summing all masks.

ShieldFL [14]. These methods uses Two-Trapdoor Ho-

momorphic Encryption based on Paillier Homomorphic En-

cryption. We exclude the step of computing the aggrega-

tion results on the server and focus solely on the encryp-

tion and decryption computational overhead. On the client

side, the computational complexity is O(ℓ(TEnc + TDec)),
as clients encrypt and decrypt their models using Paillier

Homomorphic Encryption. On the server side, the compu-

tational complexity is O(ℓ(TDec)), as the server performs

partial decryption on the uploaded models.

PEFL [11]. On the client side, the computational com-

plexity is O(ℓ(TEnc + TDec)), as clients use Paillier Homo-

morphic Encryption to encrypt and decrypt their models.

On the server side, the complexity is O(ℓn(TEnc + TDec)),
as the dual-server system repeatedly encrypts and decrypts

models during the computation of Pearson coefficients and

secure mean values.

C.2. Experimental Setup

We tested each method’s runtime in a practical setting with

n = 103 and ℓ = 106. For SecAgg, Bell et al., ACORN,

and the Diffie-Hellman key agreement in FLSeg, we use

the elliptic curve curve25519 with the modulus q set as the

group size. The t-out-of-n secret sharing scheme is config-

ured with t = 0.1n, and we assume that 10% of the users

drop out. For ShieldFL and PEFL, which both utilize Pail-

lier Homomorphic Encryption, the key length is set to 128

bits.

C.3. Communication Overhead

The client communication cost in FLSeg is O(2ℓ), account-

ing for Segment Exchange and model upload. HE-based

methods [11, 14] introduce ∼8× overhead due to ciphertext

size O(ℓ · |X|) with |X| ≥ 256 bits. SMPC-based meth-

ods [1, 4, 13] have similar complexity O(2ℓ + 5 log n) but

require five rounds with neighbors for key agreement, mak-

ing them slightly more costly in practice. FLSeg is more

communication-efficient.

D. Setups for Experiments

D.1. Datasets and Models

The setups for datasets FEMNIST [5], CIFAR-10 [9] and

CIFAR-100 [9] are listed in Tab. C.1.

D.2. Evaluated attacks

We simulated three types of Byzantine attacks: Labelflip-

ping [7], Min-Max [17], IPM [18], and two privacy infer-

ence attacks: Inverting-Gradients [8] and iDGL [19]. The

parameters for all attacks are shown in Table D.2.

To maintain consistency with the notation used in the

original papers of the compared methods, we slightly abuse

some symbols here. The same symbol may represent differ-

ent meanings in different methods, and the specific mean-

ings can be referenced in the original papers.

For Labelflipping, we flipped the labels of all attackers’

data, i.e., if the labels in the dataset are within the range

[0,m], then for each class c, the label is set to m− c.

Attacks Hyperparameters

Labelflipping N/A

Min-Max γinit = 5, τ = 1× 10−2, set δ as the

coordinate-wise standard deviation

IPM ϵ = 10
Inverting-Gradients learning rate 0.1
iDLG learning rate 1

Table D.2. Attacks and Hyperparameters. N/A indicates that the

attack has no hyperparameters that need to be set.

D.3. Compared Methods

We compared our method with several existing baselines,

including the FL baseline FedAvg [15]; Byzantine-robust

FL methods: Krum [3], DnC [17], RFA [16], GAS [12],

FLTrust [6], and ClippedClustering [10]; and privacy-

preserving robust FL methods: ACORN [1], ShieldFL [14],

and PEFL [11]. The hyperparameters for all Compared

methods are shown in Table D.3. Consistent with Sec. D.2,

we slightly abuse some symbols here.

Compared Methods Hyperparameters

FedAvg N/A

Krum N/A

DnC niters = 1, c = 2.0, b = 200
RFA R = 100, ν = 1e6
GAS p = 200
FLTrust N/A

ClippedClustering τ is the median of L2 Norm

clustering with average linkage

ACORN L2 Norm Bound B = 4
for CIFAR-100 and FEMNIST,

B = 3 for CIFAR-10

ShieldFL N/A

PEFL N/A

FLSeg(Krum) segment size |γ| = 200, λ = 0.1
FLSeg(Dnc) |γ| = 200, λ = 0.1,

niters = 1, c = 2.0, b = |γ|

Table D.3. Compared methods and Hyperparameters. N/A indi-

cates that the attack has no hyperparameters that need to be set.

In our experiments, FLSeg divides the model into seg-

ments of 200 consecutive parameters per group, with the

remaining parameters forming the final group.

When applying RAR, methods such as Krum, RFA, and

Median, which originally operate on the entire model, are

directly applied to each segment. For DnC, which requires

subsampling, the sampling size is set to be the same as the

segment size.

D.4. Segment size Experiment Setup

In the impact of segment size experiments, the original

CNN trained on CIFAR-10 had only 62,006 parameters.

To more precisely investigate the impact of segment size

on privacy protection, we use a larger CNN with ℓ =
2, 904, 970 parameters. Except for model parameters, all

other experimental settings remain the same as in Tab. C.1.

D.5. Computing Infrastructure

The experiments were carried out on a computing environ-
ment equipped with an Intel(R) Xeon(R) Gold 6133 CPU
running at 2.50GHz, paired with an NVIDIA GeForce RTX
3090 GPU. The system was supported by 128GB of DDR4
RAM and utilized a 1TB SSD for storage. The operat-
ing system used was Ubuntu 20.04 LTS. The experiments
were conducted using Python 3.10 and PyTorch 2.0.1, with
CUDA 11.7 providing GPU acceleration. This setup was
consistently used throughout the experiments to ensure re-
liable and reproducible results.

References

[1] James Bell, Adrià Gascón, Tancrède Lepoint, Baiyu Li,

Sarah Meiklejohn, Mariana Raykova, and Cathie Yun.

ACORN: input validation for secure aggregation. In 32nd

USENIX Security Symposium, USENIX Security 2023, Ana-

heim, CA, USA, August 9-11, 2023, pages 4805–4822.

USENIX Association, 2023. 1, 2, 3

[2] James Henry Bell, Kallista A. Bonawitz, Adrià Gascón,

Tancrède Lepoint, and Mariana Raykova. Secure single-

server aggregation with (poly)logarithmic overhead. In CCS

’20: 2020 ACM SIGSAC Conference on Computer and Com-

munications Security, Virtual Event, USA, November 9-13,

2020, pages 1253–1269. ACM, 2020. 1

[3] Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui,

and Julien Stainer. Machine learning with adversaries:

Byzantine tolerant gradient descent. Advances in neural in-

formation processing systems, 30, 2017. 3

[4] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio

Marcedone, H Brendan McMahan, Sarvar Patel, Daniel Ra-

mage, Aaron Segal, and Karn Seth. Practical secure aggre-

gation for privacy-preserving machine learning. In proceed-

ings of the 2017 ACM SIGSAC Conference on Computer and

Communications Security, pages 1175–1191, 2017. 1, 2

[5] Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian

Li, Jakub Konečnỳ, H Brendan McMahan, Virginia Smith,

and Ameet Talwalkar. Leaf: A benchmark for federated set-

tings. arXiv preprint arXiv:1812.01097, 2018. 2

[6] Xiaoyu Cao, Minghong Fang, Jia Liu, and Neil Zhenqiang

Gong. Fltrust: Byzantine-robust federated learning via trust

bootstrapping. In NDSS. The Internet Society, 2021. 3

[7] Minghong Fang, Xiaoyu Cao, Jinyuan Jia, and Neil Gong.

Local model poisoning attacks to {Byzantine-Robust} feder-

ated learning. In 29th USENIX security symposium (USENIX

Security 20), pages 1605–1622, 2020. 2

[8] Jonas Geiping, Hartmut Bauermeister, Hannah Dröge, and

Michael Moeller. Inverting gradients-how easy is it to break

privacy in federated learning? Advances in neural informa-

tion processing systems, 33:16937–16947, 2020. 2

[9] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple

layers of features from tiny images. 2009. 2

[10] Shenghui Li, Edith C-H Ngai, and Thiemo Voigt. An ex-

perimental study of byzantine-robust aggregation schemes in

federated learning. IEEE Transactions on Big Data, 2023. 3

[11] Xiaoyuan Liu, Hongwei Li, Guowen Xu, Zongqi Chen, Xi-

aoming Huang, and Rongxing Lu. Privacy-enhanced feder-

ated learning against poisoning adversaries. IEEE Transac-

tions on Information Forensics and Security, 16:4574–4588,

2021. 2, 3

[12] Yuchen Liu, Chen Chen, Lingjuan Lyu, Fangzhao Wu, Sai

Wu, and Gang Chen. Byzantine-robust learning on heteroge-

neous data via gradient splitting. In International Conference

on Machine Learning, pages 21404–21425. PMLR, 2023. 3

[13] Hidde Lycklama, Lukas Burkhalter, Alexander Viand, Nico-

las Küchler, and Anwar Hithnawi. Rofl: Robustness of se-

cure federated learning. In SP, pages 453–476. IEEE, 2023.

2

[14] Zhuoran Ma, Jianfeng Ma, Yinbin Miao, Yingjiu Li, and

Robert H Deng. Shieldfl: Mitigating model poisoning at-

tacks in privacy-preserving federated learning. IEEE Trans-

actions on Information Forensics and Security, 17:1639–

1654, 2022. 2, 3

[15] Brendan McMahan, Eider Moore, Daniel Ramage, Seth

Hampson, and Blaise Aguera y Arcas. Communication-

efficient learning of deep networks from decentralized data.

In Artificial intelligence and statistics, pages 1273–1282.

PMLR, 2017. 3

[16] Krishna Pillutla, Sham M Kakade, and Zaid Harchaoui. Ro-

bust aggregation for federated learning. IEEE Transactions

on Signal Processing, 70:1142–1154, 2022. 3

[17] Virat Shejwalkar and Amir Houmansadr. Manipulating the

byzantine: Optimizing model poisoning attacks and defenses

for federated learning. In NDSS, 2021. 2, 3

[18] Cong Xie, Oluwasanmi Koyejo, and Indranil Gupta. Fall of

empires: Breaking byzantine-tolerant sgd by inner product

manipulation. In Uncertainty in Artificial Intelligence, pages

261–270. PMLR, 2020. 2

[19] Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. idlg: Im-

proved deep leakage from gradients. CoRR, abs/2001.02610,

2020. 2

	FLSeg process
	Reputation System
	Computational Time Complexity and Overhead
	Complexity
	Experimental Setup
	Communication Overhead

	Setups for Experiments
	Datasets and Models
	Evaluated attacks
	Compared Methods
	Segment size Experiment Setup
	Computing Infrastructure

