
FLSeg: Enhancing Privacy and Robustness in Federated Learning under

Heterogeneous Data via Model Segmentation

Supplementary Material

A. FLSeg process

The overall workflow of FLSeg is illustrated in Algorithm 1.

For simplicity, some parameters (e.g., learning rate η) are

omitted to focus on the core process. In FLSeg training, the

mode of segmentation is fixed and publicly known to ensure

consistency between Exchange and Aggregation. The

personalized model vt+1
i obtained from LocalTraining

is used solely for local tasks and does not participate in ag-

gregation, whereas updates to the global model wt+1
i are

involved in subsequent Exchange and Aggregation.

Algorithm 1: FLSeg Process

Input: Initial model w0, training rounds T , the

mode of segmentations {γ(1), . . . , γ(d)}
Output: Model after T training round wT

1 S initializes (pkS , skS) and broadcasts pkS to ci;

2 for t← 0 to T − 1 do

3 S broadcasts wt to all client;

4 for each client ci parallel do

5 vt+1
i , wt+1

i ← LocalTraining(wt);

6 perform Exchange(wt+1
i , cj) and upload

mixed model to S;

7 S computes wt+1 ←

Aggregation({(wt+1
i )mix}i∈[n],

{γ(1), . . . , γ(d)});

8 return wT

B. Reputation System

To test the performance of the reputation system in defend-

ing against Byzantine attacks, we conducted experiments

on CIFAR-10 using Min-Max attacks, with 40% of the par-

ticipants being attackers. The results are shown in Figure

B.1.

We recorded the similarity scores for all uploaded mod-

els calculated by the server during the first round of aggre-

gation, with the results shown in Figure B.1 (Left). It can

be observed that the mixed models resulting from Segment

Exchanges between honest parties have significantly higher

similarity scores compared to those exchanged with attack-

ers. This is because the segments of malicious clients will

deviate from the benchmark, resulting in lower similarity

scores.

Honest clients that exchange segments with malicious

0 20 40 60 80 100

����

����

���

0

50

S
im

il
ar

it
y
 S

co
re

s

Client ID 

 Attacker

 Corrupted Client

 Honest Client

0 20 40 60 80 100

����

0.0

0.2

0.4

0.6

A
v
er

ag
e 

R
ep

u
ta

ti
o
n

s

Client ID

 Honest Client

 Attacker

Figure B.1. Left: Similarity scores calculated by the server during

the first round of aggregation. Right: Average reputation of each

user at the end of training.

users will receive low similarity scores, which will reduce

the reputation of the malicious clients. To verify this, We

recorded the average reputation of each client at the end of

training, with the results shown in Figure B.1 (Right). The

results show that the average reputation of honest clients

is much higher than that of malicious clients in all clients’

reputation lists. This means that malicious clients will find

it increasingly difficult to match with honest clients during

the Segment Exchange phase.

C. Computational Time Complexity and Over-

head

In Section 5.2, we compared the computational efficiency of

FLSeg with privacy-preserving FL methods in terms of pri-

vacy protection. Here, we provide the complexity analysis

and experimental setup for the comparison methods.

C.1. Complexity

SecAgg [4]. The client-side computational complexity is

O(n2 + ℓn), including O(n) for key agreement with all

clients, O(ℓn) for pairwise mask generation for the model

with all other clients, and O(n2) for generating t-out-of-

n Shamir secret shares and communicating with all clients.

On the server side, the computational complexity isO(n2ℓ),
comprising O(n2) for reconstructing the mask seeds of

dropped users from the secret shares submitted by surviv-

ing users using Lagrange basis polynomials, and O(n2ℓ)
for removing masks from each user’s masked input.

Bell et al. [2] and ACORN [1]. These methods share the

same privacy protection mechanism, with ACORN adding

zero-knowledge proofs (ZKP) to restrict gradient norms

for robustness. Since ZKP primarily ensures robustness



Dataset FEMNIST CIFAR-10 CIFAR-100

Architecture MLP CNN SqueezeNet

# Parameters 84762 62006 781156

# Communication rounds 100 100 400

# Local epochs 5 5 1

Optimizer SGD SGD SGD

Batch size 64 64 64

Learning rate 0.1 0.1 0.1

Momentum 0.5 0.5 0.5

Weight decay 0.0001 0.0001 0.0001

Learning rate decay No No No

Gradient clipping Yes Yes Yes

Clipping norm 2 2 2

Table C.1. Default experimental settings for FEMNIST, CIFAR-10 and CIFAR-100

rather than privacy, we exclude its overhead from ACORN’s

cost analysis. The client-side computational complexity is

O(log2 n + ℓ log n), consisting of O(log n) for key agree-

ment with neighbors, O(ℓ log n) for pairwise mask gener-

ation, and O(log2 n) for t-out-of-n Shamir secret sharing.

The server-side computational complexity is O(n(log2 n+
ℓ log n)), includingO(n log2 n) for reconstructing pairwise

masks for dropped clients, O(nℓ log n) for reconstructing

model masks for non-dropped clients, and O(nℓ) for col-

lecting, verifying, and summing all masks.

ShieldFL [14]. These methods uses Two-Trapdoor Ho-

momorphic Encryption based on Paillier Homomorphic En-

cryption. We exclude the step of computing the aggrega-

tion results on the server and focus solely on the encryp-

tion and decryption computational overhead. On the client

side, the computational complexity is O(ℓ(TEnc + TDec)),
as clients encrypt and decrypt their models using Paillier

Homomorphic Encryption. On the server side, the compu-

tational complexity is O(ℓ(TDec)), as the server performs

partial decryption on the uploaded models.

PEFL [11]. On the client side, the computational com-

plexity is O(ℓ(TEnc + TDec)), as clients use Paillier Homo-

morphic Encryption to encrypt and decrypt their models.

On the server side, the complexity is O(ℓn(TEnc + TDec)),
as the dual-server system repeatedly encrypts and decrypts

models during the computation of Pearson coefficients and

secure mean values.

C.2. Experimental Setup

We tested each method’s runtime in a practical setting with

n = 103 and ℓ = 106. For SecAgg, Bell et al., ACORN,

and the Diffie-Hellman key agreement in FLSeg, we use

the elliptic curve curve25519 with the modulus q set as the

group size. The t-out-of-n secret sharing scheme is config-

ured with t = 0.1n, and we assume that 10% of the users

drop out. For ShieldFL and PEFL, which both utilize Pail-

lier Homomorphic Encryption, the key length is set to 128

bits.

C.3. Communication Overhead

The client communication cost in FLSeg is O(2ℓ), account-

ing for Segment Exchange and model upload. HE-based

methods [11, 14] introduce ∼8× overhead due to ciphertext

size O(ℓ · |X|) with |X| ≥ 256 bits. SMPC-based meth-

ods [1, 4, 13] have similar complexity O(2ℓ + 5 log n) but

require five rounds with neighbors for key agreement, mak-

ing them slightly more costly in practice. FLSeg is more

communication-efficient.

D. Setups for Experiments

D.1. Datasets and Models

The setups for datasets FEMNIST [5], CIFAR-10 [9] and

CIFAR-100 [9] are listed in Tab. C.1.

D.2. Evaluated attacks

We simulated three types of Byzantine attacks: Labelflip-

ping [7], Min-Max [17], IPM [18], and two privacy infer-

ence attacks: Inverting-Gradients [8] and iDGL [19]. The

parameters for all attacks are shown in Table D.2.

To maintain consistency with the notation used in the

original papers of the compared methods, we slightly abuse

some symbols here. The same symbol may represent differ-

ent meanings in different methods, and the specific mean-

ings can be referenced in the original papers.

For Labelflipping, we flipped the labels of all attackers’

data, i.e., if the labels in the dataset are within the range

[0,m], then for each class c, the label is set to m− c.



Attacks Hyperparameters

Labelflipping N/A

Min-Max γinit = 5, τ = 1× 10−2, set δ as the

coordinate-wise standard deviation

IPM ϵ = 10
Inverting-Gradients learning rate 0.1
iDLG learning rate 1

Table D.2. Attacks and Hyperparameters. N/A indicates that the

attack has no hyperparameters that need to be set.

D.3. Compared Methods

We compared our method with several existing baselines,

including the FL baseline FedAvg [15]; Byzantine-robust

FL methods: Krum [3], DnC [17], RFA [16], GAS [12],

FLTrust [6], and ClippedClustering [10]; and privacy-

preserving robust FL methods: ACORN [1], ShieldFL [14],

and PEFL [11]. The hyperparameters for all Compared

methods are shown in Table D.3. Consistent with Sec. D.2,

we slightly abuse some symbols here.

Compared Methods Hyperparameters

FedAvg N/A

Krum N/A

DnC niters = 1, c = 2.0, b = 200
RFA R = 100, ν = 1e6
GAS p = 200
FLTrust N/A

ClippedClustering τ is the median of L2 Norm

clustering with average linkage

ACORN L2 Norm Bound B = 4
for CIFAR-100 and FEMNIST,

B = 3 for CIFAR-10

ShieldFL N/A

PEFL N/A

FLSeg(Krum) segment size |γ| = 200, λ = 0.1
FLSeg(Dnc) |γ| = 200, λ = 0.1,

niters = 1, c = 2.0, b = |γ|

Table D.3. Compared methods and Hyperparameters. N/A indi-

cates that the attack has no hyperparameters that need to be set.

In our experiments, FLSeg divides the model into seg-

ments of 200 consecutive parameters per group, with the

remaining parameters forming the final group.

When applying RAR, methods such as Krum, RFA, and

Median, which originally operate on the entire model, are

directly applied to each segment. For DnC, which requires

subsampling, the sampling size is set to be the same as the

segment size.

D.4. Segment size Experiment Setup

In the impact of segment size experiments, the original

CNN trained on CIFAR-10 had only 62,006 parameters.

To more precisely investigate the impact of segment size

on privacy protection, we use a larger CNN with ℓ =
2, 904, 970 parameters. Except for model parameters, all

other experimental settings remain the same as in Tab. C.1.

D.5. Computing Infrastructure

The experiments were carried out on a computing environ-
ment equipped with an Intel(R) Xeon(R) Gold 6133 CPU
running at 2.50GHz, paired with an NVIDIA GeForce RTX
3090 GPU. The system was supported by 128GB of DDR4
RAM and utilized a 1TB SSD for storage. The operat-
ing system used was Ubuntu 20.04 LTS. The experiments
were conducted using Python 3.10 and PyTorch 2.0.1, with
CUDA 11.7 providing GPU acceleration. This setup was
consistently used throughout the experiments to ensure re-
liable and reproducible results.
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Sarah Meiklejohn, Mariana Raykova, and Cathie Yun.

ACORN: input validation for secure aggregation. In 32nd

USENIX Security Symposium, USENIX Security 2023, Ana-

heim, CA, USA, August 9-11, 2023, pages 4805–4822.

USENIX Association, 2023. 1, 2, 3

[2] James Henry Bell, Kallista A. Bonawitz, Adrià Gascón,
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