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A. Appendix
A.1. More Related Work
Depth Estimation Depth estimation from 2D camera im-
ages is a challenging topic in Computer Vision, categorized
into regressing metric depth [2, 3, 20, 27, 61] and rela-
tive depth [23, 37, 43]. BinsFormer [27] introduces suf-
ficient interaction between probability distribution and bin
predictions to generate proper metric estimation. DPT [43]
exploits vision transformers as a backbone for dense rela-
tive depth prediction. Recent works [4, 58, 59] attempt to
build a foundation model with excellent generalization per-
formance across domains while maintaining metric scale.
ZoeDepth [4] uses a lightweight depth head with a novel
metric bin design to combine metric and relative depth es-
timation. DepthAnything [58, 59] introduces the affine-
invariant loss to ignore the unknown scale and shift during
the training stage, additionally, a data engine has been de-
vised to automatically generate pseudo depth annotations
for unlabeled images.
3D Positional Embedding The necessity of the 3D Po-
sition Encoder (PE) has been addressed in prior stud-
ies [32, 33, 45]. PETR series [32, 33] discretize the camera
frustum space into meshgrid coordinates which are trans-
formed to 3D world space with camera parameters, then the
3D coordinates are input to a 3D position encoder with 2D
image features to construct the 3D position-aware features.
However, leveraging hand-crafted camera-ray depth bins as
the channel dimensionality for the point cloud disregards
depth variations across different pixels. To ameliorate the
aforementioned problem, 3DPPE [45] transforms the pixels
to 3D space with camera parameters and predicted pixel-
wise depth results, the resulting 3D points are sent to a po-
sition encoder to construct the 3D feature with point-level
embeddings.

A.2. Implicit Distribution Supervision.
To fully leverage the strengths of the foundation model, we
exploit the generated relative depth results as pseudo labels
for extra supervision of our depth prediction Di,j . To elab-
orate, the crucial issue is converting metric depth to relative
depth, this process can be formulated as:
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where Drel is relative depth, Dmtr is metric depth, scale
and shift are sample-wise parameters for transposition.

Noticing the linear relationship between 1
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perform mean-variance normalization [1] separately:
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where E and V ar represent the computation of the mean

and variance respectively, 1̂
Dmtr and D̂rel correspond to

the normalized outcomes. Given that the coefficient 1
scale is

strictly positive, it follows that the two normalization results
for each sample are equivalent. Consequently, we take the
reciprocal of the predicted depth Di,j , normalize the out-
come, and employ the normalized pseudo-labels as super-
visory signals to facilitate the supervised learning transition
from metric depth to relative depth.

A.3. More Ablation Study
Cross View Attention. In our CSDP module, we apply a
fixed-ratio mask to the features in order to mitigate the in-
fluence of non-overlapping regions. To verify the effective-
ness of this masking approach, we conduct ablation studies
to evaluate the impact of different mask ratios, as illustrated
in Tab. 8. With a mask ratio of 0.2, our method demonstrates
improved performance, outperforming the model without
masking and other mask ratio.

Table 8. Necessity of cross-view.

Mask Ratio NDS ↑ mAP ↑ mATE↓

- 58.3 50.3 0.578
0.1 57.3 49.6 0.609
0.2 58.5 50.5 0.569
0.3 58.2 50 0.580

Effect of Positional Depth Encoder This study seeks to
provide empirical evidence of that positional encoding,
within the multi-level depth maps, enhances the detection
capacity of 3D objects by the query. As shown in Tab. 9,
wherein multi-level scale-invariant depth prediction results
are resized to the same scale and fused together to be fed
into a point-wise embedding function, which outperforms
the baseline by 1.4% NDS and 2.4% mAP, also exceed the
single-level embedding method similar to 3DPPE [45].
Comparison with LSS method To validate the ’plug-and-
play’ capability of proposed depth predictor, we replace the



Table 9. Ablation for Positional Depth Encoder on nuScenes.

Method NDS ↑ mAP ↑ mATE ↓

Baseline 57.2 48.2 0.602
Single-level 57.9 49.6 0.587
Multi-levels 58.6 50.6 0.576

Table 10. Comparison with LSS-based method.

Method Backbone Input Resolution mAP NDS

BEVDepth R50 256*704 35.1 47.5
BEVDepth-R R50 256*704 36.0 48.4

Table 11. Effect of Hybrid Depth Supervision on nuScenes val
set.

Supervision Abs Rel ↓ Sq Rel ↓ NDS ↑ mAP ↑

LiDAR only 0.17 1.45 58.3 49.9
Pseudo only 0.23 3.71 58.4 50.1

Hybrid 0.15 1.41 58.6 50.6

depth predictor in BEVDepth with our FSPE and CSDP
modules. The results, presented in Table 10, demonstrate
the effectiveness and transferability of our proposed design.

Effect of Hybrid Depth Supervision. To further vali-
date the effectiveness of the hybrid supervision approach
for CSDP, we compare the performance of different super-
vision methodologies. As presented in Tab. 11, employ-
ing only pseudo-labels results in an improvement in detec-
tion performance; however, it leads to a decrease in depth
estimation performance. This indicates that distribution-
based supervision provides a more comprehensive supervi-
sory signal for overall depth maps but lacks the precision
of absolute depth supervision. Consequently, with hybrid
supervision, both the absolute relative error (Abs Rel) and
squared relative error (Sq Rel) decrease, while the model
achieves a 1.4% increase in mAP and a 0.6% increase in
NDS.

A.4. Result Visualization
Qualitative Results. We show the qualitative detection re-
sults of FreqPDE in Fig. 6 on multi-view images. The 3D
predicted bounding boxes are drawn with different colors
for different classes. As illustrated by the highlighted cir-
cles, our method accurately detects the category and lo-
cation of distant targets, while also mitigating the chal-
lenges posed by occluded small targets to some extent. This
demonstrates an enhancement in the model’s detection ca-
pability for distant targets following the integration of a
more precise depth estimation module.
More Visualization. We also show more detection results
of some challenging scenes in Fig. 7 and Fig. 8. Our method
shows impressive results on crowded and distant objects.



Figure 6. Qualitative detection results on multi-view images on the nuScenes val set. The 3D predicted bounding boxes are drawn with
different colors for different classes.



Figure 7. Qualitative detection results on multi-view images and BEV space on the nuScenes val set.



Figure 8. Qualitative detection results on multi-view images and BEV space on the nuScenes val set.
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