
Appendix

A. Overview of Appendices
Our appendices contain the following additional details:

• Sec. B provides implementation details of the base-
line methods, including configurations and training
settings.

• Sec. C specifies the evaluation metrics used in our
experiments, detailing their definitions and computa-
tional methods.

• Sec. D describes the training setup, including hyperpa-
rameter choices, optimization strategies, and training
procedures.

• Sec. E provides additional experimental results.

• Sec. F presents the model details, including archi-
tecture components, parameter settings, and additional
design choices.

B. Baseline implementation
B.1. DreamBooth

We employ DreamBooth to achieve personalized face
aging, leveraging its ability to fine-tune models for specific
individuals while preserving their identity. The entire train-
ing process consists of two stages to ensure that the gener-
ated faces exhibit both the desired age-related characteris-
tics and the original identity information.

Stage 1: Fine-tuning for Personalized Aging Model.
In the first stage, we aim to train the model to generate faces
with specific target age characteristics. To achieve this, we
collect a dataset of facial images corresponding to the de-
sired age range and use them to fine-tune the model. During
training, we employ two types of text prompts:

• Instance Prompt: We use the text "a photo of
xx years old man/woman" (e.g., "a photo
of 60 years old man") to explicitly instruct
the model to generate facial features that match the tar-
get age.

• Class Prompt: We utilize a more generic class-level
prompt, "a photo of man/woman", to ensure
diversity in the generated images and prevent catas-
trophic forgetting.

Based on these image-text pairs, we fine-tune the model
to adapt to the desired age transformation. The optimization
process is guided by the following loss function:
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where:

• x: A real image of a person with a specific age and
identity.

• c: The Instance Prompt, which explicitly specifies
the target age. This ensures that the generated image
matches the target age.

• xpr: A class-level image sampled from a general
dataset, not associated with a specific identity.

• cpr: The Class Prompt, a generic description, which
helps maintain diversity and prevents catastrophic for-
getting.

• x̂θ(·): The denoised output computed by the model.

• αt, σt: Scaling factors for the diffusion and denoising
process.

• ϵ, ϵ′: Gaussian noise sampled from a standard normal
distribution.

• wt, wt′ : Time-dependent loss weights.

• λ: A hyperparameter balancing the two loss terms.

The first term is the personalization loss, which trains the
model to reconstruct the specific identity images. The sec-
ond term is the class preservation loss, ensuring that the
model does not overfit the personalized data and forget gen-
eral class-level features (preventing catastrophic forgetting).

Stage 2: Personalized Identity Token Fine-tuning. In
the second stage, we aim to associate the source face with
a specific identity token, enabling precise control over age
transformation during inference. To achieve this, we in-
troduce a unique token "sks" as an identity mapping and
fine-tune the model using the following setup:

• Instance Prompt: We use "a photo of sks
man/woman" as the instance prompt, linking the
source face to the identity token "sks".

• Class Prompt: Similar to the first stage, we use "a
photo of man/woman" as the class prompt to en-
sure that the generated faces retain realistic gender at-
tributes without overfitting to a particular dataset.



Through this second fine-tuning stage, the model learns
to generate age-transformed faces while preserving the orig-
inal identity. The loss function remains similar to the first
stage, combining reconstruction loss and class-based con-
straints to maintain realism and diversity.

LoRA-Based Fine-Tuning for Efficient Adaptation.
To improve training efficiency and reduce redundant model
parameters, we employ LoRA (Low-Rank Adaptation) in
DreamBooth fine-tuning. The updated model weights are
represented as:

W ′ = W + λ1∆W1 + λ2∆W2 (2)

where W is the original pre-trained model weight, ∆W1

and ∆W2 are low-rank weight update matrices for differ-
ent training stages, and λ1, λ2 are tunable hyperparameters.
By adjusting λ1 and λ2, we can flexibly balance the degree
of editability and identity preservation. This approach en-
hances training stability while allowing more precise age
transformation control during inference.

During inference, we use "a photo of xx years
old sks man/woman" to generate target image.

B.2. IP-Adapter-FaceID

IP-Adapter-FaceID is a personalized face generation
method based on image-conditioned prompts, enabling pre-
cise face aging transformations. By leveraging multiple
face embeddings, we can achieve personalized age modi-
fications while preserving identity characteristics.

Computing the Target Age Embedding We first col-
lect a large dataset of face images corresponding to a spe-
cific target age group. These images serve as a reference to
capture the general age-related facial attributes. To extract
a representative embedding for the target age, we compute
the average embedding of the collected facial images as fol-
lows:

embs∗ =
1

N

N∑
i=1

E(Ii) (3)

where E(Ii) represents the embedding extracted from
each facial image Ii, and N is the total number of images
in the dataset. This average embedding serves as a gener-
alized representation of the facial characteristics associated
with the target age.

Extracting the Source Face Embedding Next, we ex-
tract the embedding of the source face, denoted as:

embssrc = E(Isrc) (4)

This embedding captures the identity-specific character-
istics of the input face before any aging transformation.

Generating the Hybrid Face Embedding To obtain
the final embedding representation for face generation, we

combine the source face embedding with the target age em-
bedding using a weighted interpolation:

embs = λ1embssrc + λ2embs∗ (5)

where λ1 and λ2 are tunable hyperparameters that con-
trol the balance between identity preservation and age trans-
formation. By adjusting λ1 and λ2, we can achieve differ-
ent levels of modification, allowing for flexible trade-offs
between fidelity to the original identity and the desired age-
related changes.

Finally, we use embs to generate personalized face im-
age.

B.3. IP-Adapter-FaceID + DreamBooth

We integrate the two aforementioned approaches. First,
following the training protocol outlined in Appendix A.1,
we employ DreamBooth to train a personalized aging LoRA
model. Subsequently, during inference, we utilize the IP-
Adapter-FaceID method, which synthesizes target-age fa-
cial images by leveraging the prompt "a photo of xx
years old sks man/woman" in conjunction with
face embeddings embssrc obtained from a face encoder.

C. Evaluation Metrics Specification
In this work, we adopt several evaluation metrics to com-

prehensively assess the performance of our face generation
system. These metrics not only quantify the quality of the
generated images but also measure the degree of successful
attribute transfer. Below, we elaborate on the motivation,
formulation, and significance of each metric.

C.1. Face Similarity (Face Sim.)

Identity preservation is a critical aspect of face genera-
tion. To evaluate how well the generated face maintains the
identity of the source, we extract 512-dimensional feature
vectors from a pretrained FaceNet model [6]. Let Embsrc
denote the source face embedding and Embtgt the gener-
ated face embedding. Their cosine similarity is computed
as:

Face Sim. =
Embsrc ·Embtgt

∥Embsrc∥ ∥Embtgt∥
(6)

This value ranges from −1 to 1, with higher values indi-
cating better identity preservation. This metric is motivated
by the need to ensure that the generated face reliably re-
flects the source identity, which is paramount for applica-
tions such as personalized avatar generation and forensic
analysis.

C.2. Kernel Inception Distance (KID)

KID is employed to evaluate the overall quality and di-
versity of the generated images by comparing the feature
distributions of real and generated samples. It is based on



the Maximum Mean Discrepancy (MMD) computed with a
radial basis function (RBF) kernel:

k(x, y) = exp
(
−γ∥x− y∥2

)
with the default bandwidth parameter γ = 1

512 . Formally,
KID is defined as:
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Lower KID values indicate a smaller discrepancy between
real and generated image distributions, reflecting higher
generation quality. The motivation behind using KID lies in
its unbiased estimation of distributional similarity in high-
dimensional feature spaces.

C.3. Age Mean Absolute Error (AgeMAE)

Age transformation is a key attribute in our generation
task. We quantify the accuracy of the age attribute by com-
puting the Age Mean Absolute Error (AgeMAE). Let ytarget
denote the target age and ŷgen be the predicted age of the
generated face as obtained from [5]. The AgeMAE is cal-
culated as:

AgeMAE =
1

N

N∑
i=1
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This metric directly reflects the model’s capability to
achieve the desired age transformation, with lower values
indicating a closer match to the target age.

C.4. Relative Age Mean Absolute Error (R-
AgeMAE)

To further assess the effectiveness of the Age Prompt in
transferring the target age to the generated face, we propose
the Relative Age Mean Absolute Error (R-AgeMAE).
This metric measures the absolute difference between the
average age obtained from the Age Prompt and the esti-
mated age of the generated face. Let ȳprompt denote the av-
erage predicted age from the Age Prompt (in cases where
multiple images are used) and ŷtgt the predicted age of the
generated face. Then, R-AgeMAE is defined as:

R-AgeMAE = |ȳprompt − ŷtgt| (9)

A lower R-AgeMAE indicates that the Age Prompt has been
successfully transferred, as the generated face’s age closely
aligns with the intended prompt age. This metric is crucial
for verifying the effectiveness of age conditioning in our
generation framework.

C.5. Face Quality Assessment

In addition to the above metrics, we assess the visual
quality of the generated images using a face quality assess-
ment method [4]. This algorithm evaluates attributes such
as sharpness, illumination, and overall visual fidelity, pro-
viding a quality score that objectively reflects the percep-
tual quality of the image. Higher quality scores indicate
superior visual quality. The motivation for this metric is to
ensure that the generative model not only preserves identity
and age attributes but also produces aesthetically pleasing
and realistic images.

C.6. Inference Time

Given that different generative methods may have vary-
ing computational demands, we also measure the inference
time required to generate an image. This metric is of partic-
ular importance in practical applications where efficiency
and scalability are critical. Shorter inference times imply
that the model is more suitable for real-time or large-scale
deployment, without compromising generation quality.

C.7. User Survey

Finally, to complement the objective metrics, we conduct
user surveys to collect subjective evaluations of the gener-
ated images. The user survey results provide valuable in-
sights into the perceived quality of the generated faces and
help validate the effectiveness of our method from a human
perspective. The user study consists of the following evalu-
ation tasks:

(1) Facial consistency: Participants are presented with a
source image and multiple target images generated by dif-
ferent methods. They are asked to select the target image
that most closely resembles the source image.

(2) Age prompt similarity: Given a source image, an
age prompt, and a set of target images, participants choose
the target image that best matches the given age prompt.

(3) Visual quality: Participants receive both source and
target images and are asked to select the target image that
appears more photorealistic and exhibits a more natural age
transformation.

D. Training Details
D.1. Training Dataset

During the construction of the second-stage training
dataset, we applied a rigorous filtering process. We em-
ployed the YOLOv8 [3] object detection model to exclude
images containing two or more faces and utilized the CLIB-
FIQA face quality assessment method [4] to filter out low-
quality images affected by blurriness, extreme lighting con-
ditions, or corruption. To enable dynamic sampling, we ap-
plied an age estimation network [5] to predict the age of all



images. Subsequently, we curated a cross-age identity pool
from VGGFace2-HQ [1], ensuring that for each identity, a
balanced number of images were retained across different
age groups. This guarantees that during sampling, images
from different age groups have approximately equal prob-
abilities of being selected, thus maintaining diversity and
fairness in training. Finally, we leveraged Human-LLaVA
[2] to generate detailed textual descriptions for each face
image.

D.2. Training Details

We use Stable Diffusion v1.5 as the base model for train-
ing. To achieve better inference results and demonstrate
the plug-and-play feature of the age adapter, we set Re-
alistic Vision V4.0 as our base model for inference. Our
baseline method also uses Realistic Vision V4.0 as the base
model.

In the Disentangled Representation Learning Stage, we
freeze the ViT backbone and train only the neck and head
networks. In the Face Reconstruction Stage, the encoder
trained in the Disentangled Representation Learning Stage
is frozen, while the focus shifts to training the Age Adapter.
Additionally, LoRA modules are utilized to fine-tune the
attention modules of the U-Net.

In the Disentangled Representation Learning Stage of
the loss function are set as follows:

λage = 10−2, λadvid = 10−3, λadvage = 2× 10−3

The batch size is set to 1024, and training is conducted
for approximately 30K steps.

In the Face Reconstruction Stage of the training strategy
are set as follows:

ps = 0.05, pa = 0.05, pd = 0.05, lr = 10−4.

In the Face Reconstruction Stage, all training images are
downsampled to 256×256, with a batch size of 24 per GPU.
The training is performed on five NVIDIA 3090 GPUs for
approximately 200K steps.



E. More Experiments
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Figure 1: Perform lifespan synthesis using different aging guidance. As aging guidance increases, the generated faces
exhibit more pronounced aging traits, such as deeper wrinkles and looser skin. When aging guidance decreases, the age
features gradually fade, creating a natural transition between the source image and age prompts. Spherical interpolation
enables fine-grained control over aging features, ensuring smooth and diverse age transformations.



Figure 2: The impact of age prompt quantity on generated results, showing a trend consistent with Fig. ??.
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Figure 3: Additional Face Aging Results. Our method generates diverse age transformation results, forming a tree-like
structure, as shown in the figure. This hierarchical representation demonstrates the model’s ability to adapt to various age
characteristics while preserving identity, producing diverse and coherent outputs.
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Figure 4: Additional qualitative comparison with baseline methods. Note the results generated by our method: In the
left image, the generated face is consistent with the Age Prompt, exhibiting age spots. In the right image, the generated face
shows signs of drooping eyelids. The fidelity is significantly higher than that of the baseline methods.
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Figure 5: Additional qualitative comparison of face aging. Our method offers greater flexibility, supporting multi-view
face generation and enabling precise facial expression manipulation through text prompts. Additionally, it can be combined
with stylized LoRA to generate anime-style faces.
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Figure 6: Additional qualitative comparison of face aging. Compared to comparison methods, TimeBooth generates faces
that are both more natural and diverse, effectively avoiding the issue of ’child faces with elderly textures.’

Figure 7: Qualitative comparison of lifespan synthesis. TimeBooth generates more natural images with high fidelity and
consistency.



F. Model Details
F.1. Disentangled Face Encoder

Layer Operation Params Input Output

proj in Linear 512 → 512 (B, S, 512) (B, S, 512)

Layer 1-4 (Attn) PerceiverAttention 8 heads, 64 dim/head Query: (B,16,512) (B,16,512)

Key/Val: (B,S,512)

Layer 1-4 (FFN) FeedForward 512→2048→512 (B,16,512) (B,16,512)

proj out Linear 512 → 512 (B,16,512) (B,16,512)

norm out LayerNorm - (B,16,512) (B,16,512)

Table 1: The network architecture of the neck.

Layer Type Parameters Input Shape Output Shape
norm mlp LayerNorm - (B,16,512) (B,16,512)

flatten Flatten - (B,16,512) (B,8192)

linear1 Linear 8192→2048 (B,8192) (B,2048)

act1 LeakyReLU - (B,2048) (B,2048)

linear2 Linear 2048→512 (B,2048) (B,512)

act2 LeakyReLU - (B,512) (B,512)

dropout Dropout p=0.5 (B,512) (B,512)

age prob head Linear 512→101 (B,512) (B,101)

Table 2: The network architecture of the age head.

Layer Type Parameters Input Output
LayerNorm Normalization - (B,16,512) (B,16,512)

Flatten Reshape - (B,16,512) (B,8192)

Linear1 Projection 8192→4096 (B,8192) (B,4096)

LeakyReLU1 Activation α=0.01 (B,4096) (B,4096)

Linear2 Projection 4096→2048 (B,4096) (B,2048)

LeakyReLU2 Activation α=0.01 (B,2048) (B,2048)

Dropout Regularization p=0.5 (B,2048) (B,2048)

Linear3 Projection 2048→512 (B,2048) (B,512)

Table 3: The network architecture the ID head. The configuration of CosFace is omitted here. Please refer to [7].



F.2. Age Adapter

Layer Type Parameters Input Shape Output Shape
LayerNorm dim=768 (B, N, 768) (B, N, 768)
LayerNorm dim=768 (B, N, 768) (B, N, 768)
LayerNorm dim=768 (B, N, 768) (B, N, 768)
Linear + GELU + Linear 512 → 1024 → 768 (B, N, 512) (B, N, 768)
Linear + GELU + Linear 512 → 1024 → 768 (B, N, 512) (B, N, 768)
Cross Attention Blocks(ID→Age) depth=4, heads=12 (B, N, 768) (B, N, 768)
Cross Attention Blocks(Age→ID) depth=4, heads=12 (B, N, 768) (B, N, 768)
Concatenation - (B, N, 768) × 2 (B, 2N, 768)
LayerNorm dim=768 (B, 2N, 768) (B, 2N, 768)
Learnable Tokens 32 tokens (32, 768) (B, 32, 768)
Q-Former depth=8, heads=12 (B, 32, 768), (B, 2N, 768) (B, 32, 768)

Table 4: The network architecture of Age-Conditioned ID Encoder
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