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1. Further Experimental Comparisons

To comprehensively evaluate the performance of our pro-
posed method, we provide additional visual comparisons
of fusion results. Figure | presents source images from
different datasets with various types of degradation. Af-
ter processing these images using different fusion methods,
the corresponding fusion results are shown in Figure 2. As
observed in Figure 2, our method exhibits significant ad-
vantages in artifact suppression, noise elimination, feature
alignment, and the restoration of contrast and detail. These
results further demonstrate the superiority of our method in
terms of visual quality.
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Figure 1. Source images to be fused and corresponding GTs of
degraded images. The first row shows the reference images, while
the second row presents the GTs of degraded images. The third
and fourth rows display misaligned degraded images and their dis-
tortions.

*Corresponding author: Huafeng Li (hfchina99 @163.com).

2. Evaluation of Alignment Performance

To evaluate the alignment performance of our method, we
use the deformation field generated by the UniFuse net-
work for image alignment and compare it with other im-
age alignment methods, including VoxelM [1], TransM [2],
and CorrtMLP [3]. To quantify the alignment results, we
adopt commonly used alignment metrics: mean squared
error (Qmse), correlation coefficient (Q)..), and structural
similarity (Qssim)- To ensure a fair comparison, all un-
aligned degraded images are first processed by AMIR for
image quality restoration before feeding them into the com-
parison methods. As evident from Table [, our method
demonstrates significant overall advantages across differ-
ent datasets. This is primarily attributed to the specially
designed degradation-aware prompt module, which ensures
robust feature alignment performance when handling vari-
ous types of data. To visually assess the quality of align-
ment, we generate alignment error maps by subtracting the
aligned images from their corresponding label images. For
better visualization, we render the error maps using the
color spectrum shown below the figure, where perfectly
aligned regions appear white. As clearly shown in the align-
ment error maps in Figure 3, our method exhibits a sig-
nificant advantage in feature alignment compared to other
methods.

3. Further Ablation Study

Effectiveness of DAPL. To visually analyze the effective-
ness of DAPL, we visualize the results under the three set-
tings in the DAPL ablation study, as shown in Figure 4.
In Setting A, the fusion results of the network exhibit fea-
ture misalignment due to the lack of assistance from DAPL,
which reduces the effectiveness of OUFR and subsequently
affects the feature alignment performance of FA. In Set-



Table 1. Comparison of alignment performance across different methods and datasets.

BraTs2020 Dataset | SynthRAD2023 Dataset | FDG PET/CT Dataset
Methods Qmse »lr Qcc T stim T | Methods Qmse \l/ Qcc T stim T | Methods Qmse J, Qcc T stim T
VoxelM 1.49E-3  0.456 0.885 VoxelM 7.02E-4  0.485 0.902 VoxelM 3.01E-4 0477 0.927
TransM 5.07E-4  0.485 0.961 TransM 7.24E-4  0.484 0.906 TransM 2.92E-4 0478 0.919
CorrtMLP 4.89E-4 0.485 0.962 CortMLP 5.12E-4  0.490 0.931 CorrtMLP 242E-4 0.482 0.968
Ours 4.21E-4 0.488 0.966 | Ours 348E-4 0.492 0.951 Ours 9.52E-5 0.493 0.935
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Figure 2. Comparison of fusion results using different methods.
Rows 1-11 show results from various fusion approaches. Top and
bottom text indicate the image restoration methods used above and
below the red line, while left text specifies the fusion method for
each row.

ting B, the fusion results show significant contrast devia-
tions and a loss of source image details due to the absence
of degradation-aware prompts in the fusion and restoration
network, making it difficult for the network to maintain con-
sistent fusion performance across different degradation task
scenarios. In Setting C, the fusion results display a de-
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Figure 3. Visual comparison of alignment performance. The first
row shows the aligned image labels, the second row presents the
misaligned images, and the third to sixth rows display the align-
ment error maps for different methods. The closer the image in-
formation is to white, the better the alignment performance.

cline in both feature alignment and detail restoration per-
formance. Only when DAPL is fully retained do the fusion
results achieve optimal visual quality.

Effectiveness of OUFR. To visually validate the effec-
tiveness of OUFR, we replace the Spatial Mamba compo-
nent with a Transformer and the standard Mamba, respec-



Refrence Degraded

BraTs2020

on
N
o
Q
a
~
k=

FDG PET/CT

Misaligned
<

Setting A
L“ i

Setting B Setting C

Figure 4. Visual comparison of DAPL’s effectiveness. The first column shows the reference image without degradation, the second
column presents the ground truth (GT) of the degraded image, the third column displays the misaligned degraded image, the fourth
column highlights the distortions in the misaligned degraded image, and the fifth to eighth columns show the fusion results under different

experimental settings.
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Figure 5. Visual comparison of OUFR’s effectiveness. The first column shows the reference image without degradation, the second
column presents the ground truth (GT) of the degraded image, the third column displays the misaligned degraded image, the fourth
column highlights the distortions in the misaligned degraded image, and the fifth to eighth columns show the fusion results under different

experimental settings.

tively, and also conduct an experiment where the entire
OUEFR is removed for comparison. As shown in Figure 5,
when Spatial Mamba is replaced by either the Transformer
or the standard Mamba, feature misalignment occurs in the
fusion results. This phenomenon becomes even more pro-
nounced when the entire OUFR is removed. This is because
the introduction of Spatial Mamba effectively eliminates
modality differences between source image features, allow-
ing the feature alignment process to proceed without being
affected by these differences, thus producing higher-quality
fused images. Only when OUFR is fully present does the

network achieve optimal fusion quality, further demonstrat-
ing the effectiveness of OUFR.

Effectiveness of FA. To visually analyze the impact of
using multiple RegBLKSs jointly in FA on the fusion results,
we conduct an ablation study by adjusting the number of
RegBLKs and observing their effects. As shown in Figure
6, when no RegBLKs are used in FA, significant feature
misalignment occurs in the fused image. When the num-
ber of RegBLKs (J) is set to 4, feature alignment achieves
optimal results.

Effectiveness of UFR&F. To visually demonstrate the
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Figure 6. Visual comparison of FA’s effectiveness. The first column shows the reference image without degradation, the second column
presents the ground truth (GT) of the degraded image, the third column displays the misaligned degraded image, the fourth column high-
lights the distortions in the misaligned degraded image, and the fifth to ninth columns show the fusion results under different experimental

settings.
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Figure 7. Visual comparison of UFR&F’s effectiveness. The first column shows the reference image without degradation, the second
column presents the ground truth (GT) of the degraded image, the third column displays the misaligned degraded image, the fourth
column highlights the distortions in the misaligned degraded image, and the fifth to ninth columns show the fusion results under different

experimental settings.

effectiveness of UFR&F, we design two sets of experiments.
In the first set, we remove the LoRA branch from ALSN. In
the second set, we replace the ALSN branch with a stan-
dard multi-expert architecture. As shown in Figure 7, after
removing the LoRA branch, the network is unable to ac-
curately restore the contrast information in the source im-
ages, and the degradation removal effect is compromised
due to the loss of the network’s adaptive capability to differ-

ent types of data. When using the multi-expert architecture,
feature loss occurs in the fusion results due to the training
convergence issues mentioned in the main text. Only when
using the complete UFR&F does the network’s fusion re-
sults exhibit the best visual quality.



(a) Model complexity analysis on BraTs2020

(b) Model complexity analysis on SynthRAD2023

(c) Model complexity analysis on FDG-PET/CT
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Figure 8. Model complexity analysis. The x-axis represents the FLOPs (in billions) for models processing 256 x 256 x 256 image inputs,
the y-axis denotes the average (Qssim scores, and the bubble size indicates the number of parameters. Subplots (a), (b), and (c) correspond

to the experimental results on different datasets.

4. Complexity Comparison

In practical applications, a model’s parameter size and com-
putational load directly determine its deployment difficulty
and application cost. Therefore, we conducted a complex-
ity analysis of our proposed method and compared it with
existing approaches. Figure 8 presents the complexity com-
parison results of different methods. Our method achieves
optimal performance while exhibiting significantly lower
computational complexity than other methods, and its pa-
rameter size is also smaller than that of all the compared
All-in-One restoration fusion frameworks. This advantage
is attributed to our adoption of a single-stage design pat-
tern, which substantially reduces both the number of model
parameters and computational overhead. It is worth noting
that although our method has more parameters than some
single-degradation restoration fusion frameworks, this is
due to the incorporation of 3D convolution in the network
and the combination of multiple RegBLKs in the FA mod-
ule.

5. Limitations of the Method

Despite the promising performance demonstrated by Uni-
fuse, several limitations remain. First, the method assumes
that the input images are degraded but not severely dis-
torted, which may limit its effectiveness when dealing with
highly noisy or corrupted images. Second, while Uni-
fuse can handle alignment and fusion in a unified frame-
work, its performance may still be sensitive to extreme mis-
alignments or inconsistencies in image resolutions, as it re-
lies on the assumption of relatively consistent input condi-
tions. Third, the degradation-aware prompt learning mod-
ule, while effective for a range of common degradation
types, may not generalize well to all possible degradation
scenarios or unseen image modalities. Finally, while the
integration of ALSN allows for adaptive feature representa-
tion, its performance could be constrained by the complex-
ity of the network, potentially leading to increased compu-
tational cost in resource-limited environments. Further re-

search is needed to address these challenges, enhance the
model’s robustness, and improve its scalability across di-
verse real-world applications.
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