ART: Adaptive Relation Tuning for Generalized Relation Prediction
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A. Overview

We provide supplementary experimental details, followed
by an in-depth explanation of the balanced sampling algo-
rithm used for initial sampling. We then include a dedi-
cated section — Understanding ART through examples —
which offers an intuitive walkthrough of ART’s core sam-
pling strategy using illustrative cases. Next, we analyze the
relation predictions based on their diversity and whether
they are unseen (i.e., not contained in the training anno-
tations). We then discuss the computational cost of ART
and its baselines, analyze the trade-off between data usage
and performance, and clarify the behavior of ART on cer-
tain recall metrics. Finally, we conclude with a qualitative
comparison between ART and its baselines.

B. Additional experimental details

Training details. In addition to the hyperparameters out-
lined in Sec. 4 of the main paper, we set the initial z-
score threshold to 1.96, which corresponds to 95% of the
data. This threshold was chosen because a z-score of 1.96
is more sensitive to potential outliers, making it useful for
capturing more subtle deviations from the norm. For train-
ing, we use an initial learning rate of le — 3 and a linear
warmup for 3000 steps. We optimize with Adam (5, = 0.9,
B2 = 0.999) and apply a weight decay of 0.05. Addition-
ally, we chose 12% of training data for instruction tuning
as mR@k saturates near this point as analyzed in Fig. 5.
We use the LAVIS library [19] for implementation, training,
and evaluation. The models are trained using four Nvidia
A100 (40Gb) GPUs within two days.

Dataset details. We adopt the VG150 split for Visual
Genome (VG) [14], which includes 150 object classes and
50 predicates, aligned with established baselines [34, 36,
44, 45, 48]. In comparison, GQA [12] (GQA200 split) in-
cludes 100 predicates and 200 object classes. VG is a subset
of GQA with overlapping categories. Testing on the ex-
panded set of GQA allows us to assess the model’s general-
ization to new predicates and object categories, a more rig-
orous test of robustness than the reverse (training on GQA
and testing on VG). Additionally, we test on Open Images
(OD [16], where OI-v4 includes 9 predicates and 57 object
classes, and OI-v6 expands to 31 predicates and 601 ob-
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ject classes. Since OI’s data distribution is entirely distinct
from VG and GQA, it serves as a fully out-of-distribution
benchmark, presenting increased complexity and enabling
us to comprehensively evaluate model adaptability and ro-
bustness to unseen categories and relationships.

On semantic similarity for evaluation. We threshold the
semantic similarity S at 95% to ensure that only highly se-
mantically similar predictions are counted. For example, in
Fig. 3, FPs such as @ that are semantically similar to the
ground truth are counted as TPs. The similarity is computed
over subject—predicate—object triplets with only the predi-
cate varying. Even small differences (e.g., “bag on table”
vs. “bag under table”) yield noticeable drops in similarity.
The threshold 0.95 was selected based on qualitative analy-
sis, which confirmed that high-similarity matches preserved
meaningful semantics and did not introduce false positives.
Notably, ART frequently predicts semantically rich alter-
natives (e.g., “girl petting dog” vs. GT: “girl interacts with
dog”), which may be underrecognized by current metrics
— pointing to potential improvements in future evaluation
design.
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Figure 5. Training data subsampling analysis. We plot mR @50
for ART and Naive-RT (balanced random) as a function of the
training data percentage used (y-axis) on Vicuna model variants.
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C. Balanced sampling

As described in Sec. 3.2 of the main paper, the ART pipeline
begins with a balanced sampling algorithm, described in
Algorithm 2, to provide an unbiased and balanced under-
standing of the relations during the initial loop. This step
ensures that the subsequent adaptive sampling loop is bet-
ter guided to select informative samples rather than being
influenced by the biases of the underlying data distribution.
The balanced sampling distributes a fixed sampling budget
across multiple predicates fairly. At first, the predicates are
sorted in descending order of frequency, and their allocated
budgets are set to zero. The algorithm then allocates a sin-
gle sampling slot to a predicate with a non-zero frequency,
decreases its frequency (i.e., availability), and reduces the
remaining budget. If a predicate’s availability is exhausted,
the algorithm skips it and continues assigning slots to the
remaining predicates in a round-robin manner. This ensures
that sampling focuses on predicates whose availability has
not been exhausted while maintaining a balanced distribu-
tion as much as possible.

D. Understanding ART through examples

To help understand the inner workings of Adaptive Rela-
tion Tuning (ART), we illustrate the core sampling choices
that guide learning. ART’s goal is to adapt vision-language
models for robust and generalizable visual relation detec-
tion. It does this by selecting training instances that are
not only informative but also help the model learn from its
weaknesses.

We categorize predictions into three groups — True Pos-
itives (TP), False Negatives (FN), and False Positives (FP)
— and strategically sample from each using a combination
of entropy (model uncertainty) and semantic similarity (to
ground truth). Below, we explain the reasoning behind each
sampling choice with concrete examples:

D.1. High-Entropy True Positives (TPs): Improve
uncertain correct predictions

These are predictions where the model gets the relation
right, but shows uncertainty (high entropy) in doing so. In-
cluding them in training reinforces correct behavior and im-
proves model confidence.

Example: The model correctly predicts “boy riding bike”
but assigns nearly equal probability to “boy on bike”. This
shows uncertainty despite being correct. Sampling this TP
helps the model reinforce the right prediction with more cer-
tainty.

D.2. Low- and High-Entropy False Negatives (FNs):
Correct missed relations

False Negatives occur when a relation exists in the ground
truth, but the model says that no prominent relation exists.

Example: If the ground truth is “man holding umbrella”,
the model may either hesitate (high entropy) or confidently
predict “no prominent relation exists” (low entropy). Both
cases are important — uncertain misses highlight confu-
sion, while confident misses expose overfitting or bias.
Sampling both types improves robustness.

D.3. Low-Similarity False Positives (FPs): Penalize
semantically incorrect predictions

False positives are predicted relations that do not appear in
the ground truth. However, not all FPs are equally harmful.
Some are semantically close — or even more descriptive —
and may still reflect a correct understanding of the scene.
Others are misleading and indicate poor generalization.

Example: Given the ground truth “man in canoe”, pre-
dicting “man under canoe” is a low-similarity FP — it is
spatially incorrect and misleading. On the other hand, pre-
dicting “man paddling canoe” is a high-similarity FP that,
while not an exact match, is semantically rich and even
more informative than the original label. ART distinguishes
between such cases and focuses on refining the misleading
ones.
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Figure 6. Comparison of unique relation predictions (/eft) and
unseen relation predictions (right) for the ART (FlanT5) model
across different datasets.

These sampling decisions are made adaptively per predi-
cate using dynamically computed thresholds (based on per-
predicate entropy and similarity distributions). This ensures
flexible and targeted learning.

E. Analysis of predicted relations

To further evaluate the effectiveness of ART in predicting
informative, diverse, and unseen relations, we compared its
predictions against random and balanced random baseline
methods for both Vicuna [49] (see Fig. 4) and FlanT5 [4]
model variants. As discussed in Sec. 4, ART’s superior-
ity in predicting diverse and unseen relations extends from
Vicuna to FlanT5. Fig. 6 (left) illustrates the total number
of unique relations predicted by ART and its baselines. As
shown, ART consistently predicts a greater variety of rela-
tions across all datasets. A similar pattern can be observed
in Fig. 6 (right), where ART predicts more relations unseen
during training on VG.

Notably, GQA has the most test samples, followed by
OI-v6 and OI-v4, leading to variations in total predictions.
The larger GQA test set allows inference across broader
scenarios, increasing the likelihood of predicting more di-
verse and unseen relations.

F. Computational cost and predictive perfo-
mance

In this section, we analyze both the computational charac-
teristics and the predictive performance behavior of ART.
We provide a breakdown of training and inference time, ex-
amine the trade-off between data usage and predictive per-
formance, and explain the observed drop in R@k metrics
due to biased relation distributions in evaluation datasets.

F.1. Computational cost

As depicted in Tab. 6, while ART incurs higher training
costs due to adaptive sampling, it does not increase infer-
ence time, making it practical for real-world deployment.
The added training complexity is offset by ART’s superior
generalization, ensuring improved relation prediction with-
out sacrificing efficiency during inference. This trade-off

Table 6. Comparison of training and inference time on a single
A100 GPU.

Method Train (hrs) Inference (sec/Itr)
SGGs (Motifs, VTransE, VETO) 18-22 0.07-0.075
VLM (Random/Balanced) 32 0.45

VLM (Adaptive) 96 0.45

is crucial, as ART enhances mean Recall (mR) by prioritiz-
ing informative samples, ultimately leading to a more robust
VRD model that generalizes well to unseen data.

F.2. Computational cost vs. performance trade-off

As shown in Fig. 7, using just 12% of the training data pro-
vides an excellent trade-off between computational cost and
predictive performance. This setting achieves near-peak ac-
curacy while requiring only 1.5 days of training on four
DGX-A100 GPUs. Beyond this point, additional data yields
diminishing returns.

Notably, the 0% baseline incurs negligible computa-
tional cost but delivers limited predictive performance,
whereas the 12% configuration offers substantial gains at
a reasonable expense.
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Figure 7. Trade-off between computational cost and predictive
performance as a function of training data usage.

F.3. On R@k and gR@k performance trade-offs

While ART achieves strong generalization and diversity,
it may show lower R@k and gR@k compared to ran-
dom baselines in cases where ground-truth annotations are
skewed toward frequent but semantically shallow relations.
Random sampling tends to exploit this bias by favoring
head-predicate predictions, leading to inflated recall scores
without improving meaningful understanding. In contrast,
ART explicitly counteracts this bias through balanced and
adaptive sampling, resulting in more informative and di-
verse predictions. This is evidenced by the higher num-
ber of unique and unseen relations predicted by ART across
datasets (Figs. 4 and 6) and illustrated qualitatively in the
relation prediction examples (Sec. H).



Table 7. Adaptive vs. fixed thresholding. ¢rp: low-similarity FP
threshold, ¢gn: low-entropy FN threshold, hen: high-entropy FN
threshold, Arp: high-entropy TP threshold. From the mid point
threshold, we increase (higher-h) or decrease (lower-t) the respec-
tive thresholds to analyse the effect of fixed thresholds.

Fixed Thresholding trp  ten  hpn  hTp  R@20/50 mR@20/50
Lower-t 09 025 05 05 421/42.7 44.8/459
Mid point 095 05 05 05 37.2/374 43.2/443
Higher-h 095 05 075 075 34.5/348 44.7/459
Lower-t Higher-h 09 025 075 075 34.5/349 44.7/459
Adaptive Thresholding 41.1/41.4  46.4/47.7

G. Additional analysis:
thresholding

Adaptive vs. fixed

As depicted in Tab. 7, we begin with fixed midpoints (2"
row) for threshold values: 0.5 for entropy scores (hgN, tgN,
trp) and 0.95 for similarity scores (tpp). The higher simi-
larity threshold accounts for the fact that similarity is com-
puted on predicate phrases, not standalone predicates, re-
sulting in generally higher values (e.g., Fig. 3, instance ).
We then lower ¢ and increase h from their midpoint values
to explore fixed thresholding. However, all fixed-threshold
variations yield lower mR than adaptive thresholding, high-
lighting the difficulty of selecting an optimal fixed thresh-
old. In contrast, adaptive thresholding dynamically adjusts
per predicate, ensuring optimal tuning of the VLM.

H. Qualitative results

Next, we present some qualitative results of ART on down-
stream segmentation, followed by a comparative analysis of
relation predictions between ART and its baselines.

H.1. ART-enhanced segmentation reasoning

As shown in Fig. 8, ART-enhanced scene graphs enable
DeiSAM [32] to produce higher-quality segmentations.
While ground-truth scene graphs fail to capture the relations
in the segmentation prompt, ART’s unseen relation predic-
tion allows DeiSAM to accurately segment the referenced
object in the deictic prompt.

H.2. Comparative analysis of ART and its baselines

We compare the relationship predictions from the ART Vi-
cuna model against its strongest baseline, Naive-RT (Naive
Relation Tuning), which includes Naive-RT (balanced ran-
dom) and Naive-RT (random), as well as the ground truth.
Predictions are evaluated on the GQA, OI-v4, and OI-v6
test sets. Examples are shown in Figs. 9 to 14.

Overall, we observe that ART not only identifies new
relationships but also produces predictions that are more
meaningful than existing ground-truth annotations. Pre-
dictions that are either similar to or more meaningful than
the ground-truth annotation are highlighted in green, while
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Figure 8. ART can be used to label missing annotations and
predict new unseen predicates. Segmentation results with textual
prompts (top) using DeiSAM [32], which segments objects via
reasoning on scene graphs. ART successfully detects new relations
and improves the segmentation quality, while ground-truth scene
graphs fail to capture relations in the prompt.

those that are both informative and unseen are additionally
highlighted in yellow. Incorrect predictions are marked in
red.

ART consistently outperforms its baselines across the
GQA, OI-v4, and OI-v6 datasets by providing more mean-
ingful and informative relationship predictions. For exam-
ple, on the GQA dataset (see Fig. 9), ART predicts the sensi-
ble spatial relation under between water and sky and more
detailed interactions such as water reflecting sky and boat
sailing under sky, while Naive-RT (random) and (balanced
random) perform poorly. Fig. 10 highlights that ART pre-
dicts the more descriptive interaction swimming in between
the animal and water, whereas the Naive-RT baselines, as
well as the ground truth, only identify the spatial relation in.
On the OI-v4 dataset (see Fig. 11), ART clarifies ambigu-
ous ground-truth relations like interacts with, which raises
the question “What kind of interaction?” by providing clar-
ity that the interaction is petting and also predicts the spatial
relation near, whereas Naive-RT baselines fail to provide
clarity. Similarly, in Fig. 12, the ground-truth relation holds
between man and beer raises the question, “What does he
intend to do with the beer?” This ambiguity is resolved by
ART’s prediction of the more specific relation drinking. On
the OI-v6 dataset (see Fig. 13), ART identifies the action
paddling between man and canoe, along with the spatial
relation in, outperforming the baselines, which lack speci-
ficity in describing the interaction. Another example from
the OI-v6 dataset, shown in Fig. 14, once again shows that
the ground-truth relation contains between mug and beer
is less detailed compared to ART’s prediction of filled with,
which conveys that the mug is full or nearly full of beer. The
reasonable predictions with and holding made by Naive-RT
(random) and (balanced random) are also less descriptive.

Overall, the qualitative examples support the substantial
quantitative gains reported in Tab. | of the main paper.
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Figure 9. Comparison of ART and its baselines on the GQA dataset. ART predicts sensible spatial relations similar to the ground-truth
annotation such as, water under sky, while also identifying more informative relations than the ground truth, such as water reflecting
sky, boat floating on water, and boat sailing under sky. In contrast, both Naive-RT (random) and (balanced random) perform poorly.
Informative relation predictions are highlighted in green, while those that are both informative and unseen are additionally highlighted in
yellow. Incorrect predictions are marked in red.
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Figure 10. Comparison of ART and its baselines on the GQA dataset. The ground truth only provides a spatial relation in between
animal and water, while ART predicts the descriptive interaction swimming in. Informative relation predictions are highlighted in green,
while those that are both informative and unseen are additionally highlighted in yellow.
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Figure 11. Comparison of ART and its baselines on the OI-v4 dataset. In contrast to the provided less informative ground-truth relation
interacts with in girl interacts with dog, which raises the question “What kind of interaction?”’, ART provides a much clearer interpretation
that the interaction is petting, i.e. girl petting dog, while also identifying the sensible spatial relation near. In contrast, while Naive-RT
(random) suggests the less meaningful relation with, Naive-RT (balanced random) produces an entirely incorrect prediction. Informative
relation predictions are highlighted in green, while those that are both informative and unseen are additionally highlighted in yellow.
Incorrect predictions are marked in red.
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Figure 12. Comparison of ART and its baselines on the OI-v4 dataset. The ground truth relation holds between man and beer leaves
an open question “What he intends to do with the beer?”, while the prediction drinking made by ART gives more context and the ongoing
action. The Naive-RT baselines also predict the less descriptive relation holds. Informative relation predictions are highlighted in green,
while those that are both informative and unseen are additionally highlighted in yellow.
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Figure 13. Comparison of ART and its baselines on the OI-v6 dataset. ART predicts the more informative relation paddling between
the man and canoe while also identifying sensible spatial relation in. In contrast, although both Naive-RT (random) and (balanced random)
make reasonable spatial predictions, they fail to clarify the action taking place between the man and the canoe. Informative relation
predictions are highlighted in green, while those that are both informative and unseen are additionally highlighted in yellow.
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Figure 14. Comparison of ART and its baselines on the OI-v6 dataset. While the ground-truth relation contains between the mug and
beer merely indicates the presence of beer in the mug, the relation filled with, predicted by ART, provides more detail by suggesting that
the mug is full or nearly full of beer. The predictions with and holding, made by Naive-RT (random) and (balanced random) respectively,
are reasonable but lack the level of descriptiveness conveyed by filled with. Informative relation predictions are highlighted in green, while
those that are both informative and unseen are additionally highlighted in yellow.



