SMARTIES: Spectrum-Aware Multi-Sensor Auto-Encoder
for Remote Sensing Images

Supplementary Material

In the supplementary material, we provide detailed in-
formation for pretraining and evaluation across different
datasets. Besides, we provide additional analyses, includ-
ing the pretraining efficiency of SMARTIES, more ablation
results on the use of pretraining data and projection extrap-
olation to unseen spectral ranges. Our code and pretrained
models are available at https://gsumbul .github.
io/SMARTIES.

S1. Implementation

S1.1. Spectrum-Aware Projection Layers

We provide the details for our projection layers f;
in Tab. S1. The spectral range of each layer is defined ac-
cording to the bands of different sensors. Specifically, f; to
f12 follows the bands in Sentinel-2, fi3 to fi5 are based
on RGB images from Maxar, and fi6, f17 corresponds
to Sentinel-1. Each reprojection layer r; takes charge of
the same wavelength range as its corresponding projection

layer f;.

Sensor Dataset Layer Band Wavelength (nm)
fi  BoIl 422 - 463
fa  BO2 427 - 558
fs  BO3 524 - 595
fi BO4 634 - 696
fs  BO5 689 - 719
- BEN-S2 fe  BO6 726 - 755
fMoW-82 £, BO7 761 - 802
fs  BOS 728 - 938
fo  BSA 843 - 886
fio  B09 923 - 964
fi1 Bl 1516 - 1704
fiz  BI12 2002 - 2376
fi3 Blue 430 - 545
Maxar fMoW-RGB fi4 Green 466 - 620
fis Red 590 - 710
fie  VV 5.5x107 - 5.6x107
o BENSE 0 VH 555107 -5.6x107

Table S1. Spectral ranges for the projection layers used in SMAR-
TIES pretraining. S2 denotes Sentinel-2, S1 denotes Sentinel-1,
BEN is the abbreviation for BigEarthNet.

In-domain Seen Sensor Open-domain Seen Sensor  Open-domain Unseen Sensor

Figure S1. Different inference modes for downstream transfer to
diverse sensors: (1) in-domain, seen sensor: transfer in the do-
main Dy of the same datasets seen during pretraining, (2) open
domain, seen sensor: transfer in the domain Dy of new task, ob-
served by the same sensors used during pretraining and (3) open
domain, unseen sensor: transfer in the domain D, of new tasks
observed by any sensor. The yellow triangle denotes the position
of each inference mode. From Dy to D, an increasing degree of
generalization is required.

S1.2. Pretraining

We pretrain two versions of SMARTIES by using ViT-B
and ViT-L [2] backbones: SMARTIES (ViT-B) and SMAR-
TIES (ViT-L), while we use the same decoders with the
vanilla MAE [5]. For both versions, we pretrain for 300
epochs, using AdamW optimizer [8] (61 = 0.9, 51 = 0.95
and weight decay of 0.05) and mixed precision (FP16) with
the batch size of 2048 (distributed over 8 A100 GPUs),
the base learning rate of 1.5e-4, warmup of 20 epochs and
cooldown by half-cosine decay schedule. For data augmen-
tation, we randomly apply vertical flipping, horizontal flip-
ping and rotation in order. After this, by randomly sampling
scale parameter between 0.25 and 1 and keeping the same
width-height ratio, we crop images, which are then resized
to the input image size with bi-cubic interpolation. For a
given pair of images, we apply identical transformations to
both images.

S1.3. Evaluation

Once SMARTIES is pretrained with ViT-B and ViT-L back-
bones, the resulting encoders and spectrum-aware projec-
tion layers are used for single/multi-modal downstream
transfer of single/multi-label classification and semantic
segmentation with RS images from diverse sensors. For
downstream transfer, we consider all the possible inference
modes: (1) in-domain, seen sensor inference, (2) open-
domain, seen sensor inference, and (3) open-domain, un-
seen sensor inference that are illustrated in Fig. S1.

For a fair comparison with other foundation models,
we follow the same evaluation protocols and the splits of
datasets with previous works by using non-parametric kNN
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Figure S2. Different multi-modal fusion strategies for downstream transfer on multi-modal input images. S-A Projection, S and C denote

Spectrum-aware Projection, stacking and concatenation, respectively.

classification, linear probing, non-linear frozen backbone
finetuning and full finetuning. kNN classification allows
to directly assess the learned representations without ad-
ditional training, while linear probing or frozen backbone
finetuning require to train a linear classifier or nonlinear task
head, respectively, on top of the frozen backbone. Finetun-
ing requires to train the entire backbone with the task head
on the downstream dataset. Below, we provide the evalua-
tion details for each dataset.

BigEarthNet-S1. By following CROMA [3], we apply lin-
ear probing by using the 10% of the complete training set
and evaluating on the entire validation set without data aug-
mentation. Linear probing is applied for 100 epochs by us-
ing AdamW optimizer with the batch size of 1024 and the
base learning rate of le-3, which is decayed 10x at epochs
60 and 80. We resize images to the input image size with
bi-cubic interpolation.

BigEarthNet-S2. By following SatMAE (S2) [1] and
SeCO [9], we apply full finetuning by using the 10% of the
complete training set and evaluating on the entire validation
set. We finetune for 100 epochs, using AdamW optimizer
with the batch size of 256, the base learning rate of Se-5, the
weight decay of 0.05, the drop path rate of 0.2, warmup of
5 epochs and cooldown by half-cosine decay schedule. For
data augmentation, we first randomly apply vertical flip-
ping, horizontal flipping and rotation in order. Then, we
resize images to the input image size with bi-cubic interpo-
lation.

BigEarthNet-MM. By following CROMA [3], we apply
linear probing by using 10% of the complete training set and
evaluating on the entire validation set without data augmen-
tation. Linear probing is applied for 100 epochs by using
AdamW optimizer with the batch size of 1024 and the base
learning rate of le-3, which is decayed 10x at epochs 60
and 80. We resize image pairs to the input image size with
bi-cubic interpolation. To operate SMARTIES on multi-
modal input, as shown in Fig. S2, we consider three multi-
modal fusion strategies: 1) image stacking; 2) feature con-
catenation; and 3) mixup concatenation. Compared to first
two strategies, mixup concatenation, where we concatenate

features extracted from the backbone from both modalities
after applying mixup with spectrum-aware projections, is
introduced for the first time in our paper.

EuroSAT. We apply linear probing, kNN classification and
fine-tuning on EuroSAT by using the same splits as SatMAE
(S2) [1]. For linear probing, we use AdamW optimizer for
100 epochs with the batch size of 1024 and the base learning
rate of 1e-3, which is decayed 10x at epochs 60 and 80. For
finetuning, we use AdamW optimizer for 150 epochs with
the batch size of 256, the weight decay of 0.05, the base
learning rate of 2e-4, the drop path rate of 0.1, warmup of
5 epochs and cooldown by half-cosine decay schedule. We
also apply CutMix (o« = 1) and MixUp (o = 0.8) with
between images and labels. Only for finetuning, we use
data augmentation with random vertical flipping, horizontal
flipping and rotation in order. We resize images to the input
image size with bi-cubic interpolation.

RESISC-45. We apply fine-tuning on RESISC-45 by us-
ing the same splits as Scale-MAE [12]. To this end, we use
AdamW optimizer for 200 epochs with the batch size of 64,
the weight decay of 0.05, the base learning rate of 6.25e-5,
the drop path rate of 0.2, warmup of 5 epochs and cooldown
by half-cosine decay schedule. For data augmentation, we
first apply random vertical flipping, horizontal flipping and
rotation in order. Then, by randomly sampling scale param-
eter between 0.25 and 1 and keeping the same width-height
ratio, we crop images, which are then resized to the input
image size with bi-cubic interpolation during training. Dur-
ing evaluation, we first resize images to 256 x256, and then
apply center cropping with the input image size.

WHU-RS19. For kNN classification, we only resize images
to the input image size with bi-linear interpolation.

UCMerced. We first resize images to 256256, and then
apply center cropping with the input image size for kNN
classification.

BurnScars, DynamicEarthNet, SpaceNet7 experiments
are conducted by following the default evaluation proto-
col of the PANGAEA [10] benchmark for a fair comparison
with other methods. In detail, for all these datasets, frozen
backbone UPerNet probing is applied: model weights of



PT Data Size mAP (%) Acc. (%)
Model Backbone PTEpochs  "o»" RGB  BEN-S210% RESISC-45
SatMAE (S2) [1] VIT-L 50 713K - 82.1 N/A
SatMAE (S2) [1] VIT-L 200 713K - 86.2 N/A
SatMAE (RGB) [1] VIT-L 800 © 30K N/A 4.8
Scale-MAE [12] VIT-L 800 - 304K N/A 95.7
CROMA [3] VIT-B (x2) 300 M ] 87.6 N/A
SpectralGPT [6] VIT-L 200 713K - 86.9 N/A
Spectral GPT* [6] VIT-L 300 M ] 89.0 N/A
S2IMAE [7] VIT-L 200 713K - 86.5 N/A
S2MAE [7] VIT-L 300 M ; 88.5 N/A
SatMAE++ (RGB) [11] VIT-L 800 - 364K N/A 97.5
SatMAE++ (S2) [11] VIT-L 50 713K - 85.1 N/A
SMARTIES (Ours) VIT-L 300 248K 60K 87.7 95.8
CROMA [3] VIT-L (x2) 600 M - 883 N/A
Spectral GPT [6] VIT-H 200 713K - 89.2 N/A
SpectralGPT* [6] VIT-H 300 M ] 91.4 N/A
SOMAE [7] VIT-H 200 713K - 88.8 N/A
SOMAE* [7] VIT-H 300 M ] 90.7 N/A
SkySense [4] VITL (x2)+ Swin-H 780 215M  21.5M 88.7 96.3*

Table S2. Pretraining efficiency comparison of the existing foundation models, including 1) the considered backbones, 2) pretraining (PT)
epochs, 3) PT data size in terms of numbers of Sentinel-2 (S2) and RGB images, 4) BEN multi-label scene classification results (mAP)
when finetuning (FT) is applied with 10% of the training set, 5) RESISC-45 scene classification results (top-1 accuracy) under FT. *20%
of the training set is used. N/A indicates not applicable due to either the lack of publicly available models or sensor mismatch between

models and datasets (which could lead to unfair comparisons).

our pretrained encoder are frozen, while UPerNet segmen-
tation head is learned on top of it. As DynamicEarthNet
includes multi-temporal images, Lightweight Temporal At-
tention Encoder (L-TAE) [13] is utilized between the en-
coder and the segmentation head to map each image time-
series into an aggregated feature map. To learn the segmen-
tation head parameters for all the datasets, AdamW opti-
mizer is used for 80 epochs with the batch size of 8, the
weight decay of 0.05 and the base learning rate of le-4,
which is decayed 10x at 60% and 90% of the total steps.
We refer readers to [10] for the details of the PANGAEA
evaluation protocol.

SICKLE. We apply non-linear frozen backbone finetuning
by freezing the parameters of our pretrained model, while
learning a segmentation head on top it. We use the same
segmentation head with [14] by using a single convolu-
tional layer followed by bi-linear upsampling. For zero-
shot sensor transfer to Landsat-8 images, we apply inter-
polation to unseen spectrum ranges of: 1) blue band (B2)
via the weighted average of the projection layers dedicated
to Sentinel-2 blue (B02) and aerosol (BO1) bands; and 2)
thermal infrared band (B10) via the weighted average of the
projection layers dedicated to Sentinel-2 SWIR band (B12)
and Sentinel-1 VV band. For the rest of the bands, we select
the relevant projection layers dedicated to Sentinel-2 bands,
where the same spectral ranges are shared with Landsat-8

bands. To learn the segmentation head, we use AdamW op-
timizer for 200 epochs with the batch size of 32 and the base
learning rate of 8e-3, which is decayed 10x at epochs 120
and 160. Without any data augmentation, we resize images
to the input image size with nearest-neighbor interpolation.

S2. Pretraining Efficiency

In the main body of our paper, we test our models against
the existing foundation models, which use as similar pre-
training (PT) data size and epochs as possible, for a fair
comparison. To further compare the PT efficiency of
SMARTIES, in Tab. S2 we provide an extended compar-
ison of the existing models in terms of PT data size and
epochs together with BEN-S2 and RESISC-45 results un-
der finetuning. Results demonstrate that SMARTIES shows
a significantly higher PT efficiency compared to previous
methods in terms of both PT data size and epochs (which is
associated with PT time). In detail, by comparing the results
in the first block of Tab. S2, one can see that SMARTIES
uses the fewest Sentinel-2 (S2) images for PT (248K) to
achieve highly competitive performance (87.7%) on BEN-
S2 compared to the state-of-the-art SpectralGPT+ model
(89.0%), which uses four times more of S2 images during
PT. Meanwhile, SMARTIES also shows high efficiency in
terms of the use of RGB data. By using only 60K RGB PT
data, SMARTIES surpasses most of the RGB-specific mod-



PT Data Split

Backbone  PT Epochs BEN  fMoW Acc.
v X 91.1

. 50 X v 92.1
VITB v /o932
100 v v 94.3

ViT-L 100 v v 94.6

Table S3. kNN classification accuracy (%) on EuroSAT when dif-
ferent subsets of the pretraining (PT) data are used for SMAR-
TIES.

Method Backbone PT Epochs SAR PT mAP
SMARTIES (w/o PE) ViT-B 50 X 621

SMARTIES (w PE)  ViT-B 50 X 640
SMARTIES (Ours) ViT-B 50 v 736
Spectral GPT [6] ViT-B 200 X 571
SatMAE (S2) [1] ViT-L 200 X 674
SMARTIES (Ours) ViT-B 300 v 789

Table S4. BEN-S1 multi-label classification results (mAP) when
linear probing is applied with 10% of the training set. PE: projec-
tion extrapolation; PT: pretraining.

els pretrained with 6 times more data and over 2 times more
PT epochs. The high data efficiency of SMARTIES can be
attributed to: 1) the sensor-agnostic design, which explic-
itly represents data into transferable spectrum-aware spaces
instead of learning shared representations from heteroge-
neous sensors implicitly; and 2) the implicit data augmenta-
tion brought by cross-sensor token mixup. We would like to
note that masked data modeling in combination with ViTs
can be effectively scaled into larger models with higher
amount of PT data [5]. This can be seen from Tab. S2: 50
vs. 200 epochs PT of SatMAE (S2) and S2MAE (ViT-L)
vs. S2MAE (ViT-H). Thus, by feeding more PT data with
more epochs, the performance of SMARTIES can be fur-
ther scaled up. To further analyze this, we assess the effect
of different subsets of our PT data together with different
PT epochs and backbones in Tab. S3 under kNN classifica-
tion of EuroSAT. One can observe from the table that the
higher the number of images and epochs used by SMAR-
TIES for PT the better it performs. In addition, by using a
larger ViT model, SMARTIES is capable of achiving higher
kNN accuracy.

S3. Extrapolation to Unseen Spectral Ranges

For downstream transfer to a sensor unseen during pretrain-
ing (i.e., open-domain, unseen sensor inference), SMAR-
TIES can be adapted to unseen spectral ranges by apply-
ing interpolation to the learned projection layers as it is

explained in Sec. 3.4 and shown with the SICKLE re-
sults (cf. Sec. 4.4). Here, we further evaluate the gen-
eralization ability of SMARTIES to unseen regions out of
the (min, max) of the pretraining spectra through extrapo-
lation. This setting is significantly more challenging than
the SICKLE experiments, where the thermal infrared bands
falls within the pretraining range. We simulate an unseen
spectral range out of the pretraining spectra by excluding
SAR data during pretraining. Then, we perform linear prob-
ing on BEN-S1 by extrapolating the learned projection lay-
ers of SMARTIES. In addition, we also apply linear probing
with Spectral GPT and SatMAE (S2), for which SAR is al-
ready excluded from pretraining. To do this, we duplicate
VV and VH bands of BEN-S1 six times, which are given
as model inputs in place of the original input (Sentinel-2
image). Table S4 shows the corresponding results. One
can see from the table that SMARTIES pretrained without
SAR data yields lower BEN-S1 results than the full pre-
training even though projection extrapolation yields modest
+2% mAP. This shows that the downstream transfer capa-
bility of SMARTIES to an unseen sensor is valid: 1) for
the the unseen ranges falling inside the pretraining spec-
tra through projection interpolation; 2) not for the ranges
out of the limits of pretraining spectra through projection
extrapolation. Once SAR data is included in pretraining,
however, SMARTIES with even 50 pretraining epochs pro-
vides 16.5% higher mAP than Spectral GPT, which rely on
sensor-specific pretraining. These results indicate that the
generalization capability of SMARTIES highly depends on
the spectral range seen during pretraining.
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