
A. Details of Pseudo Label Generation
A.1. Transferring 2D Labels to 3D
Open-vocabulary 2D segmentation models possess rich se-
mantic knowledge and accurate pixel-level predictions, en-
abling them to localize arbitrary text queries. Since closed-
set 2D perception models tailored to autonomous driving
dataset classes are not available under an annotation-free
condition, we employ open-vocabulary segmentation mod-
els as the teachers to generate 2D perception results. Af-
ter evaluating multiple open-vocabulary models, we adopt
FC-CLIP as the primary teacher to perform instance seg-
mentation on the image set I, producing masks MI and
corresponding labels LI . However, FC-CLIP exhibits poor
performance on ”barrier” and ”traffic cone”. To compen-
sate for this, we introduce SAN as an auxiliary teacher to
segment only these two classes, and directly overwrite the
corresponding regions inMI to obtain the refined maskM ′I
and labels L′I .

To transfer 2D labels to 3D, we utilize known sensor
calibration parameters to construct a transformation ma-
trix Γ between LiDAR points and image pixels. As Li-
DAR and camera capture data asynchronously, each LiDAR
point (xi, yi, zi) ∈ R3 is projected to the pixel coordinates
pixeli = (ui, vi) ∈ R2 on the closest timestamp image set
I via coordinate transformation. The point-to-pixel map-
ping is defined as follows:

[ui, vi, 1]
T = Γc,in × Γ× [xi, yi, zi, 1]

T/zi

Γ = Γc←egoc × Γegoc←global × Γglobal←egol × Γegol←l,

c = camera, l = LiDAR,
(4)

where Γc,in denotes the camera intrinsic matrix.
Γc←egoc , Γegoc←global, Γglobal←egol , and Γegol←l are ex-
trinsic matrices used to transform coordinates from the Li-
DAR coordinate system to the camera coordinate system,
all four matrices Γ... are provided.

Through Eq. 4, the single-frame point cloud P is pro-
jected onto the image I. Based on the pixel grouping in
M ′I , we obtain point clusters P ′I with corresponding labels
L′I .

A.2. Pseudo Box Generation and Refinement
The pseudo box generation process in AnnofreeOD par-
tially follows MODEST [63] and OYSTER [66], and con-
sists of the following steps:

Ground Removal Since this task does not focus on
background elements such as roads, ground points are first
removed to better highlight objects and reduce noise. As-
suming the ground is flat, RANSAC is used to fit a planar
surface to each point with a 5 cm inlier threshold. Points
located more than 15 cm above the fitted ground plane are

retained, while others are treated as ground points and dis-
carded.

Clustering The 2D-to-3D label transfer process in Ap-
pendix A.1 introduce noise due to two main factors: First,
there may be segmentation errors from the 2D teacher
model T , where the predicted mask M ′I does not perfectly
align with the ground truthMGT

I . This is especially evident
at object boundaries, where mask precision and granular-
ity are limited. Second, inaccuracies in the transformation
matrix Γ between the LiDAR and camera can also intro-
duce errors, primarily due to small temporal misalignment
between sensors. These two sources of error jointly lead to
noisy labels when projected into 3D space. Empirically, dis-
tant objects tend to contain fewer points, sometimes fewer
than noise clusters, making semantic-level clustering for
many objects suboptimal. To address this, we adopt in-
stance segmentation-based teachers and perform instance-
level clustering for denoising. For each instance in P ′I , we
apply clustering using HDBSCAN [32] to effectively filter
out noisy points. In our implementation, the minimum clus-
ter size and cluster selection epsilon are set to 5 points and
1 meter.

Box Fitting We apply a bounding box fitting algo-
rithm [68] to assign a 3D box to each previously ob-
tained object point cluster. The 3D box is denoted as b =
(x, y, z, l, w, h, θ), where the parameters represent the cen-
troid position (x, y, z), box dimensions (l, w, h), and orien-
tation angle θ. In practice, since scene flow or motion infor-
mation is unavailable, the velocity is set as v = (0, 0, 0).

Box Refinement The refinement process primarily fol-
lows the commonsense-based method in [63]. First, bound-
ing boxes that are located below the ground or floating are
removed. The remaining boxes must satisfy the following
conditions: the number of points inside the box is ≥ 5;
the box volume is within [0.5, 120]m3; the highest point
in the box satisfies hmax ≥ hground + 0.5m, and the lowest
point satisfies hmin < hground + 1m. For each category cj , a
commonsense size prior is defined as b0cj = [l0cj , w

0
cj , h

0
cj ].

Given a pseudo box b = (x, y, z, l, w, h, θ) of category cj ,
if l < 0.6 × l0cj or l > 2 × l0cj , then l is replaced with l0cj ;
similarly for w. When l or w is modified, one of the four
vertical edges that is closest to the LiDAR center remains
fixed, which may result in changes to x and y. The bottom
face of the box is aligned with the ground. This procedure
yields boxes that are more consistent with commonsense
constraints.



Ablation Method mAP↑ NDS↑Target

(1)SEEM 16.4 20.0
2D (2)FC-CLIP 20.5 25.4

Teacher (3)SAN 18.0 23.3
(4)FC-CLIP+SAN 22.2 26.4

(1)minBA 20.5 25.3
(2)maxBA 21.7 25.7

Box (3)FRBA 21.6 25.7
Augmentation (4)DRBA 21.9 25.9

(5)DGBA 22.2 26.4

(1)L1-loss 21.8 25.9
Loss (2)smooth L1-loss 21.8 26.0

(3)NLL-loss 22.2 26.4

Table 5. Ablation study of different targets on nuScenes vali-
dation set. The experiment is based on 10-class object detection
(Tab. 1).

Method ST 0-30m 30-50m 50-80m 0-80m

Supervised - 34.5 10.0 2.9 18.2

MODEST [CVPR’22] × 12.5 0.8 0.1 5.0
OYSTER [CVPR’23] × 12.3 1.1 0.3 5.4
LiSe [ECCV’24] × 4.7 0.2 0.2 1.8
AnnofreeOD (ours) × 22.3 1.3 0.6 8.7

MODEST [63] ✓ 17.1 1.4 0.3 6.6
OYSTER [66] ✓ 19.3 1.8 0.4 8.0
LiSe [67] ✓ 24.0 4.4 1.3 11.4
AnnofreeOD (ours) ✓ 28.1 4.6 1.3 12.1

Table 6. Class-agnostic object detection by converting
nuScenes to KITTI format. We report AP3D at IoU = 0.25
for objects across various distances. ST denotes self-training.

B. Supplementary Experiments
B.1. Comparison Results
B.1.1. Converting nuScenes to KITTI Format for Class-

Agnostic Object Detection
This experiment shares the same objective as Sec. 4.2.3,
but it employs a different experimental setup. Specifically,
the nuScenes dataset was converted into KITTI format, and
scenes were sampled. As a result, the training set is sig-
nificantly smaller than that in Sec. 4.2.3, rendering direct
comparisons between the two infeasible. We present the re-
sults in Tab. 6. The baselines referenced for comparison
include MODEST [63], OTSTER [66], and LiSe [67], all of
which are based on scene flow. Slightly different, LiSe in-
corporates results from 2D detection. Given the limited data
volume, we adopted LiSe’s pseudo labels-based self-paced
learning, conducting ten rounds of self-training. Overall,

2D Teacher Car Ped Bar Trailer T.C.

FC-CLIP 43.1 54.5 10.6 10.1 3.4
SAN 50.9 51.0 32.9 10.0 33.5

Table 7. Partial annotation-free segmentation results (% IoU)
of FC-CLIP and SAN on nuScenes validation set. The results
demonstrate that different 2D teacher models exhibit varying ca-
pabilities in understanding different semantics.

the evaluation demonstrates that AnnofreeOD outperforms
other baselines across various metrics. Even without self-
training, it surpasses many self-trained results.

B.2. Ablation Study
B.2.1. Differences Among Various Teacher Models in 2D-

to-3D Knowledge Distillation
Most of the semantic and morphological knowledge
required for AnnofreeOD comes from the 2D open-
vocabulary segmentation model. The quality of the
2D teacher model determines the quality of the 3D
pseudo-labels and, consequently, the performance of the
annotation-free detector. In Tab. 5, we benchmark differ-
ent 2D teacher models (or combinations): (1) SEEM [72]
for 2D panoptic segmentation; (2) FC-CLIP for 2D panop-
tic segmentation; (3) SAN for 2D semantic segmentation;
(4) FC-CLIP for 2D panoptic segmentation with SAN’s se-
mantic segmentation results for optimization, especially for
“barrier” and “traffic cone”. The comparison between (1)
vs. (2) shows that using a better 2D teacher model brings
better performance. The results of (2) vs. (3) indicate
that panoptic (or instance) segmentation models are more
suitable as teacher models, as they enable instance-level
clustering for denoising, whereas semantic-level clustering
struggles to filter out background noise. This is because
a semantic-level mask may contain multiple objects, mak-
ing it impossible to identify noise points through cluster-
ing. Comparing (4) and (2), we see an increase of +1.7%
mAP, with notable gains of 10.8% AP and 5.8% AP for
“barrier” and “traffic cone,” respectively. In Tab. 7, we
present the performance of the 3D segmentation models
trained with FC-CLIP and SAN. Inspired by the mixture-
of-experts (MoE), we fuse the labels from different teach-
ers, achieving promising results.

B.2.2. Orientation Estimation
Tab. 8 presents the impact of different orientation estima-
tion strategies. No estimation was used as a control group
(1). Among the experimental groups, our method (4) us-
ing DINOv2 [36] for 2D patch feature matching, while (2)
utilizes a common-sense-based approach, and (3) applies
traditional 2D feature matching with SIFT [30] and Brute
Force Matching (BFM) for feature point extraction and cor-



Ablation Method AOECar ↓ mAOE ↓Target

(1)- 1.86 1.49
Orientation (2)common-sense-base 1.30 1.37
Estimation (3)SIFT+BFM 1.02 1.40

(4)DINOv2 0.62 1.31

Table 8. Ablation study for orientation estimation. (m)AOE
stands for (mean) Average Orientation Error.

respondence. Results shows that (4) improved 1.24% and
0.68% over (1) and (2) on AOEcar, respectively. The un-
satisfactory result of (3) is attributed to its sensitivity to oc-
clusion, background variations, and noise.

B.2.3. Box Augmentation
In Tab. 5, we compare various box augmentation (BA)
methods, including MinBA, MaxBA, FRBA, DRBA, and
DGBA. Experimental results show that DGBA improved
+1.7% mAP and +1.1% NDS compared to no box augmen-
tation (MinBA). The significance of BA is that it neutralizes
some noise and eliminates bias in original pseudo boxes.
Such bias can lead to fixed prediction patterns, which are
unfavorable for training on large-scale datasets. Unlike con-
ventional denoising techniques, BA aims to achieve better
performance by increasing the model’s tolerance to noise.

B.2.4. The Role of NRR
To verify the effectiveness of NRR in boundary regression,
we designed an ablation experiment comparing traditional
L1-loss, smooth L1-loss, and Gaussian NLL-loss. The re-
sult, reported in Table 5, shows that NLL-loss outperforms
the other losses, demonstrating the advantage of probability
optimization in handling noisy data. Compared to L1-loss,
smoothL1-loss (Huber loss) does not demonstrate any clear
advantage. This is because smooth L1-loss imposes more
penalties for precise predictions but is less effective when
dealing with high-noise data. In contrast, NLL-loss models
the regression target as a probability distribution. Due to its
high tolerance to uncertain data, NLL-loss can better adapt
to the variations of BA targets.

B.3. Visualization
Fig. 4 visualizes the process of box generation, refinement,
and augmentation. It can be observed that our method per-
forms excellently in multi-class recognition, though there is
still a gap compared to the ground truth.

C. Discussion
C.1. Distinction Between “Unsupervised” and

“Annotation-Free”:
In certain contexts, “unsupervised” [20, 40, 63, 66] refers to
model generation without the involvement of implicit labels

(including those from teacher models). “Annotation-free”
indicates that no labels are used during the current training
process [27, 45]. Consequently, employing an off-the-shelf
pre-trained model aligns with the definition of “annotation-
free”. Given the potential ambiguity of these terms, we
adopt “annotation-free” throughout this paper for clarity
and rigor. However, using the expression “unsupervised”
is also fine.

C.2. Comparison with weakly supervised methods:
We note that some weakly supervised 3D detection meth-
ods, e.g., FGR [50], GAL [59], and ALPI [18], train 3D
detectors using 2D annotations. These methods achieve im-
pressive performance and outperform AnnofreeOD on cer-
tain baselines. We attribute this gap mainly stems from our
method’s inability to precisely localize all targets, whereas
2D boxes provide both the location and category informa-
tion. These weakly supervised approaches are worth atten-
tion, and integrating them with AnnofreeOD could lead to
more advanced label-efficient solutions.

C.3. Dataset Selection Criteria
Our experiments primarily rely on the nuScenes dataset.
This choice is motivated by nuScenes’ low frame rate and
sparse point cloud density, which significantly impact the
performance of scene flow-based methods. AnnofreeOD
adapts effectively to these limitations. It also achieves
multi-class detection (>3 classes), a capability absent in
previous approaches. However, on datasets with higher
frame rates, such as Waymo [46], scene flow-based meth-
ods may be more advantageous.

Additionally, Waymo comprises 1950 segments, each
lasting 20 seconds and collected at 10 Hz (totaling 390000
frames). In comparison, nuScenes contains 1,000 scenes,
each 20 seconds long, annotated at 2 Hz, totaling 40000
frames. Thus, Waymo offers ten times the number of sam-
ples compared to nuScenes, leading to a proportional in-
crease in pseudo-label generation time. Given the compu-
tational cost and the target application environment of our
method, selecting nuScenes as the primary dataset is a well-
justified decision.

C.4. Limitations
First, AnnofreeOD is constrained by its reliance on 2D
teacher models. Employing a more advanced 2D teacher
model would yield superior results. Our approach integrates
predictions from multiple teacher models. However, this in-
creases computational demands.

Second, there is a noticeable disparity in detection accu-
racy across different classes. As discussed in Sec. 4.2.1,
the 2D teacher model exhibits a limited understanding of
certain semantics. Moreover, errors in class assignments
within pseudo-labels further exacerbate this issue.



Figure 4. Visualization of the process for generating pseudo boxes and box augmentation.

AnnofreeOD outperforms scene flow-based methods in
datasets with low frame rates and sparse point clouds. How-
ever, its effectiveness compared to scene flow-based ap-
proaches in high frame rate settings remains unverified. We
plan to explore this topic in future work.


