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A. Limitations and Future Work
Despite the impressive achievements, the performance of
our DimensionX depends on the video diffusion backbone.
Although current video diffusion models are capable of syn-
thesizing vivid results, they still struggle with understand-
ing and generating subtle details, which restricts the quality
of the synthetic 3D and 4D scenes. Additionally, the pro-
longed inference procedure of video diffusion models ham-
pers the efficiency of our generation process. In the future,
it is worthy to investigate how diffusion models can be inte-
grated to build a generalizable and efficient end-to-end 3D
and 4D generation framework. We believe that our research

provides a promising direction to create a dynamic and in-
teractive environment with video diffusion models.

B. More Related Work
3D Generation with Diffusion Priors. Leveraging 2D
diffusion priors for generating 3D content has revolution-
ized the field of 3D generation. Score Distillation Sam-
pling (SDS) [13, 22, 32] distills 2D diffusion priors to pro-
duce high-fidelity 3D meshes from text inputs. To further
enhance the 3D consistency, several works have explored
the object-level generation through the multi-view diffu-
sion [17, 19, 27, 33, 37]. Similar techniques have been
further applied in the scene-level generation [25]. More
recent approaches leverage video diffusion models to gen-
erate novel views from a single image, achieving impres-
sive results at both the object-level [3, 7, 29] and scene-level
[3, 7, 16]. Additionally, ReconX [15] addresses the chal-
lenge of sparse-view inputs by employing video interpola-
tion techniques, showcasing the potential of video diffusion
models for 3D scene generation. ViewCrafter [39] employs
DUSt3R [30] to build a coarse 3D scene point cloud and
resolves the gaps in areas not covered by the initial point
cloud with a video diffusion model. In this work, we un-
leash the power of video diffusion models in a novel way to
generate 3D scenes from a single image.
4D Generation with Diffusion Priors. Similar to 3D gen-
eration, 4D generation has seen significant advancements
with the pre-trained diffusion models, including image and
video diffusion. Early works [1, 23, 31, 40] adopt the SDS
technique to per-scene optimize the 4D representation from
a text or image input. However, these methods tend to cost
hours to generate a 4D asset with obvious inconsistency. To
improve the consistency and generation efficiency, subse-
quent works [12, 35] filter out high-quality dynamic meshes
from the large-scale Objaverse dataset [5, 6] and render
the multi-view videos to train a multi-view video diffusion
model. Although these models can generate high-quality
4D multi-view videos, they mainly focus on the object-
centric setting rather than the complex scene. For the gener-
ation of 4D scenes, the lack of sufficient data poses signifi-
cant challenges in producing multi-view videos that are uti-
lized to reconstruct the whole scene. More recently, 4Real
[38] firstly proposes distilling the pre-trained video diffu-
sion prior with the SDS loss to produce a photorealistic
dynamic scene. Unlike the aforementioned works, our ap-
proach emphasizes generating temporally and spatially de-
composed videos, which are subsequently merged to create



multi-view videos for high-quality 4D scene reconstruction.

C. Preliminary
Video Diffusion Models. Diffusion models [24, 28] repre-
sent a class of generative models that gradually transform
Gaussian noise into structured data through a series of de-
noising steps. For a given data distribution x0 ∼ q(x),
the forward diffusion process produces a sequence {xt}Tt=0,
where each xt incorporates progressive Gaussian noise:

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI),

with βt controlling the noise level at each step.
Current powerful video diffusion models [36] utilize a

3D Variational Autoencoder (3D-VAE) to compress spatial
and temporal information into a latent representation z, fol-
lowed by Unet or Transformer architecture, such as the Dif-
fusion Transformer (DiT) [21], which processes image to-
kens within this latent space.
Gaussian Splatting. 3D Gaussian Splatting (3DGS) [11] is
an explicit scene representation that uses a set of 3D Gaus-
sian spheres to present a scene. A Gaussian sphere is param-
eterized by its center c ∈ R3, covariance matrix Σ ∈ R3×3,
and an associated color v ∈ R3 or other attributes such as
opacity α ∈ [0, 1]. Each Gaussian represents a localized
density distribution in space, defined as:

G(x) = exp

(
−1

2
(x− c)⊤Σ−1(x− c)

)
,

where x ∈ R3 is a point in space, and Σ controls the shape
and orientation of the Gaussian.

The scene is represented as a collection of N Gaussians
{(ci,Σi,vi, αi)}Ni=1, where N is the number of Gaussians.
These Gaussians are distributed in 3D space to approximate
the geometry and appearance of the scene.

Rendering is performed by projecting the Gaussians onto
the image plane. For a given camera pose, the Gaussians
are transformed using a projection matrix P derived from
the camera’s intrinsic and extrinsic parameters. The contri-
bution of each Gaussian to the final pixel color is computed
using a weighted sum:

I(u, v) =

N∑
i=1

wi(u, v) · vi,

where wi(u, v) is the weight of the i-th Gaussian at pixel
(u, v), calculated as:

wi(u, v) = αi ·G(P−1(u, v)− ci).

The weights are normalized across all Gaussians con-
tributing to a pixel to ensure proper blending. This process

is differentiable, making it suitable for optimization tasks in
3D scene reconstruction.
Low-Rank Adaptation (LoRA). LoRA [10] introduces a
low-rank adaptation mechanism to the transformer’s weight
matrices. For a given weight matrix W ∈ Rd×k, instead
of updating W directly, LoRA constrains the update to a
low-rank matrix ∆W represented as:

W = W ′ +∆W = W +AB⊤,

where A ∈ Rd×r and B ∈ Rk×r, with r ≪ min(d, k).
This factorization ensures that the adaptation of W ′ is re-
stricted to a low-rank space, significantly reducing the num-
ber of parameters that need to be updated, while still en-
abling the model to capture essential task-specific informa-
tion efficiently.

D. Additional Illustrations on ST-Director
To decompose spatial and temporal variations, we define
equivalence relations that capture the behavior of points in
the 4D space under different conditions.
S-Equivalence Relation(∼S) For any two spacetime points
(x1, y1, z1, t1) and (x2, y2, z2, t2) ∈ R4, we define
(x1, y1, z1, t1) ∼S (x2, y2, z2, t2) if:{
S(t1) = S(t2) = S(t0) (Temporal dimension fixed)
C(t1) ̸= C(t2) (Camera viewpoint varies)

(1)
where S(t0) represents a fixed spatial slice in time t0, such
that (x1, y1, z1), (x2, y2, z2) ∈ S(t0). This relation indi-
cates that while the temporal component remains constant,
implying no actual progression in physical time, the spatial
observations differ exclusively due to variations in camera
parameters. Accordingly, the S-equivalence class [p]S en-
capsulates the set of spatial point projections across differ-
ent camera perspectives at the same temporal instance. This
class thereby abstracts the notion of viewing geometry at
a singular point in time, reflecting all spatial appearances
that are permissible by adjusting the camera’s intrinsic or
extrinsic parameters, without temporal evolution.
T-Equivalence Relation (∼T ): For any two spacetime
points (x1, y1, z1, t1) and (x2, y2, z2, t2) ∈ R4, we define
(x1, y1, z1, t1) ∼T (x2, y2, z2, t2) if there exists a trajec-
tory function fo : R → R3 for dynamic objects

⋃
i O

i(t)
satisfying the following conditions:

C(t1) = C(t2) = C0,

(x1, y1, z1) = (x2, y2, z2), (x, y, z) ∈ B,

(xj , yj , zj) = fo(tj), (xj , yj , zj) ∈
⋃

i O
i(t),

(2)
Where C0 is a constant and j = 1, 2, the condition C(t1) =
C(t2) = C0 indicates that the camera viewpoint remains
fixed, with (x, y, z) ∈ B representing static background



points and (xj , yj , zj) = fo(tj) describing the positions
of dynamic objects. Consequently, the T-equivalence class
[p]T includes all points observed from the fixed camera po-
sition C0 that either belong to the static background or lie
along the trajectory of a moving object as it progresses over
time.

E. Implementation Details

Algorithm 1 Multi-view video generation with Dimen-
sionX
Input: Reference image I , Prompt P , S-Director θs, T-

Director θT , number of frames N , number of views K,
noise level T , refine noise level Trefine

Output: Multi-view video
{{

Iij
}N

i=1

}K

j=1
.
{
Iij
}N

i=1

1: Static camera video V0 = θT (I)
2: Select one frame Iref as the reference frame
3: Generates reference multi-view using S-Director Vref =

θS(Iref)
4: Get noised reference video V ∗

ref = Add noise(Vref, T ) ▷
Using Eq. 5

5: Vt−s ← [ ] ▷ Each item stands for one frame
6: for i ∈ [N ] do
7: Vt−s[i] = θS(V0[i] | V ∗, T )
8: end for
9: Vs−t ← [ ] ▷ Each item stands for one view

10: Vs−t = SwitchTempSpatial(Vt−s) ▷ Reshape into
multi-view video

11: for i ∈ [K] do
12: V ∗

s−t[i] = Add noise(Vs−t[i], Trefine) ▷ Add noise
13: Vs−t[i] = θT (Vref[i] | V ∗

s−t[i], Trefine) ▷ Refine by
re-denoising

14: end for

E.1. Training Details
We choose the CogVideoX-I2V (5B) [36] as our backbone
video diffusion model, which contains 42 DiT blocks. For
the ST-director training, we freeze the backbone and only
train the LoRA layers for 3000 steps, which takes around
1 day with 8 NVIDIA A800 GPUs. For the frame exten-
sion and frame interpolation, we fine-tune the model for
2000 steps, which takes around 10 hours with 8 NVIDIA
A800 GPUs. The S-Director based on the video interpo-
lation model is trained for 1000 steps. Specifically, we
use DL3DV-10K [14] and OpenVid-1M [20] to train our
ST-director. Meanwhile, OpenVid-1M and RealEstate-10K
[41] are combined to train the interpolation and frame ex-
tension diffusion model.

OpenVid-1M [20] is a curated high-quality open-sourced
video dataset, including 1 million video clips with diverse
motion dynamics and camera controls. DL3DV-10K [14]

Low-quality High-quality

Figure 1. Camera trajectory in DL3DV.

is a widely-collected 3D scene dataset with high-resolution
multi-view images, including diverse indoor and outdoor
scenes. RealEstate-10K [41] is a dataset from youtube,
mianly including the captures of indoor scenes. Apply-
ing our designed data collection framework, we build the
dimension-variant dataset from DL3DV-10K and OpenVid-
1M. We select 100 high-quality temporal-variant videos
from OpenVid to train T-Director. For each S-Director
type, 100 videos are rendered according to the specific cam-
era trajectory to train the corresponding LoRA. During the
inference stage, we adopt the DDIM sampler [28] with
classifier-free guidance [9] and set the sampling step to 50.

E.2. Building Dimension-variant Dataset

We provide more details about how we build the dimension-
variant dataset from the open-source datasets.
Trajectory planning for spatial-variant data. As shown
in Fig. 1, though DL3DV [14] includes a vast collection
of indoor and outdoor multi-view images, the camera paths
are highly complex and diverse. On one hand, this makes
it challenging for video diffusion models to learn the de-
sired camera motion paradigms from such spatial-variant
data. On the other hand, these complex camera motion pat-
terns may degrade the generation quality of video diffusion
models, as they deviate significantly from the pre-training
dataset distribution of video diffusion.

Instead of directly using the 3D dataset, we propose re-
constructing photorealistic 3D scenes and rendering videos
consistent with our spatial variations. To select scenes that
align with our target paths, we need to compute the cover-
age range of the cameras throughout the entire scene. Given
N cameras in a scene, we first compute the center C and
principal axes A along the direction x, y, and z using the
Principal Component Analysis (PCA) technique:

C =

∑N
i=1 pi

N
, A = SVD(P − C), (3)

where pi denotes the position of camera i, P =
{pi, 1 ≤ i ≤ N} ∈ RN×3 represents the position set of N
cameras, and SVD is the Singular Value Decomposition op-
eration. Next, we need to calculate the lengths L of each



axis from the projection distance D:

D = (P − C) ·A (4)
L = max(D)−min(D). (5)

Built on the above calculation, we have already figured
out the distribution of the camera throughout the entire
scene. To cope with various scenes, we establish the follow-
ing rules to filter out the qualifying data: (1) Camera Dis-
tribution: We calculate the center of the scene and judge
how cameras capture around the scene, such as circle or
semi-circle captures. (2) Bounding Box Aspect Ratio: The
aspect ratio of the bounding box should meet the require-
ment for various S-Directors. For instance, the aspect ratio
of x and y axis should not vary too greatly, which helps
in selecting appropriate 360-degree surrounding videos. (3)
Camera-to-Bounding Box Distance: We calculate the dis-
tance from each camera position to the closest plane of
the bounding box and prioritize data with smaller total dis-
tances to ensure better camera placement. With the filtered
dataset based on the above rules, it is necessary to compute
the occupancy field within the scene to help us plan the fea-
sible region for the rendering cameras. After reconstructing
the entire scene’s 3DGS from multi-view images, we ren-
der multi-view images and their corresponding depth maps,
and then use TSDF [4] to extract the scene’s mesh from the
RGB-D data.

With the camera bounding box and TSDF of the scene,
we can acquire spatial-variant videos consistent with our
target path. For instance, if our goal is to generate a circu-
lar video, we can select scenes that meet our requirements
based on the camera bounding box, as shown in the fourth
column of Fig. 1. Then, we extract its TSDF, choose a start-
ing camera, and utilize the scene’s occupancy field to avoid
collisions between the camera and objects in the scene dur-
ing rendering.

In the 3D world, camera movements are defined by 6
degrees of freedom (DoF), with each DoF allowing move-
ment in both positive and negative directions for translation
and rotation, resulting in 12 distinct motion patterns. Ad-
ditionally, we also train orbital motion category S-Director,
where the camera follows a smooth, circular path around
the subject, capturing a unique perspective beyond the stan-
dard DoF-based movements. Specifically, we provide the
visualization of our designed S-Director in Fig. 9.
Flow guidance for temporal-variant data. We provide
the optical flow maps of static and dynamic camera videos
in Fig. 3.

E.3. 3DGS and 4DGS Optimization Details
We provide more details about the 3D and 4D scene gener-
ation. In the 3D scene generation experiments of our main
paper, we adopt the orbit right S-Director for the single-
view setting. For the sparse-view setting, we compare the
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Figure 2. Visualization of attention map of base model. Starting
from step 0, the early denoising steps (before step 10 of total de-
noising step 50) have determined the outline and layouts of output
videos.

Fix Camera Moved Camera

Figure 3. Optical flow of static and dynamic camera videos.

estimated rotation and translation of input images with our
designed S-Director and select the suitable S-Director. Due
to our early-stopping strategy, the input images can flexibly
correspond to S-Director, allowing the camera trajectory of
generated videos to adaptively adjust based on the input im-
age. In the 3DGS optimization stage, we select the first and
end frames of generated videos to produce the initializa-
tion point cloud and 49 frames from videos to optimize the
scene. Following the confidence-aware 3DGS in ReconX
[15], we leverage the confidence map from DUSt3R [30]
and set the optimization step to 3000 steps. The hyper-
parameters λ1, λssim, and λlpips are 0.8, 0.2, and 0.3, re-
spectively. Generating a 49-frame video with S-Director
takes approximately 200 seconds on a single NVIDIA A800
GPU with 26.38GB memory. The corresponding 3DGS
optimization also takes around 200 seconds and requires
14.36GB memory.

In the 4D scene generation experiments of our main pa-
per, we adopt the orbit right and left S-Directors. In the
multi-view video generation process, we set the strength
of reference video to 0.9 and the appearance refinement
strength to 0.7. During the deformable 3DGS phrase, we
use the generated multi-view videos as the training multi-
view videos, and apply the original deformable 3DGS to
reconstruct the 4D scene. In particular, the per-view video
frame is 49 and the view number is 22.
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Figure 4. Visualization of attention map with Switch-Once
LoRA fusion. At the start of the denoising loop, S-Director dis-
tributes high attention values across the scene, reflecting notice-
able camera motion. After switching to T-Director at step 4, T-
Director refocuses attention on scene objects.

E.4. Attention Map Visualization

We visualize the attention map of the 30th DiT block output
from the base model during the denoising loop, as shown
in Fig. 2. Compared to the attention maps generated with
S-Director and T-Director, the base model’s attention map
reveals a blend of spatial and temporal information recovery
throughout the denoising process. Additionally, we present
the attention maps obtained using the Switch-Once method
in Fig. 4. At the beginning of the denoising loop, when
S-Director is applied, the attention maps show high atten-
tion values distributed across the scene, highlighting notice-
able camera motion. After switching to T-Director at step
4 of the denoising loop, the high attention values shift to
focus on objects within the scene. Over subsequent steps,
the objects exhibit motion while preserving camera move-
ment, resulting in coordinated motion of both objects and
the camera in the generated video.

E.5. 4D Scene Generation Evaluation Metrics

Following SynCamMaster [18], we evaluate visual quality
using CLIP-T and CLIP-F, while evaluating view synchro-
nization through Mat. Pix. (K) and CLIP-V. Specifically,
CLIP-T measures the average CLIP similarity between each
frame and its corresponding text prompt, and CLIP-F quan-
tifies the average CLIP similarity between adjacent frames.
To further evaluate view synchronization, we utilize the im-
age matching method GIM [26] to compute the number
of matched pixels with confidence exceeding a specified
threshold, denoted as Mat. Pix. (K). Additionally, CLIP-
V captures the average CLIP similarity among multi-view
frames captured simultaneously.

F. More Experiments

F.1. More Ablation Studies
Design of LoRA fusion mechnism. We ablate our pro-
posed Switch-Once lora composition approach for hybrid-
dimension control. We compare our approach with the
naive fusion, which merges multiple LoRA weights to-
gether linearly [10]. As shown in Fig. 11, the LoRA
merge approach cannot handle the hybrid-dimension con-
trol, while our Switch-Once achieves effective dimension-
aware LoRA fusion, presenting impressive controllability
along the spatial and temporal axis.
ST-Director for controllable video generation. We ablate
the influence of our proposed ST-Director for dimension-
variant video generation. Specifically, we compare our Di-
mensionX with the base model, CogVideoX [36], to de-
menstrate the effectiveness of our approach. As presented
in Fig. 12, even provided with detailed spatial and tem-
poral prompt control descriptions, CogVideoX struggles to
achieve the desired control, whereas our DimensionX en-
ables controllable generation across multiple dimensions.
Frame extension for single-view 3D scene generation.
We ablate the design of frame extension for single-view 3D
scene generation. We compare our extended video diffu-
sion (145 frames) with the original model (49 frames) on
the 360-degree 3D scene generation setting. As shown in
Fig. 13, with our proposed frame extension, our S-Director
is able to generate a complex scene from a single image.
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Figure 5. Ablation study on 4D video generation. We compare
the novel views with different conditions.

Identity-preserving denoising for 4D generation. As il-
lustrated in Fig. 5, we conduct ablation studies on the ef-
fectiveness of reference video latent sharing and appear-
ance refinement. Specifically, we can observe that directly
combing per-frame spatial-variant videos causes severe in-
consistency, including the background and subject shape.
Through the reference video latent sharing, the global back-
ground and appearance exhibit a high consistency across
different frames. Building on reference video latent shar-
ing, appearance refinement enhances the coherence of ap-
pearance details.



Method RotErr↓ TransErr↓

MotionCtrl 1.23 10.21
CameraCtrl 1.07 8.27
Ours 0.88 7.29

Table 1. Camera control Accuracy.

F.2. More Results

Quantitative comparison of few-view 3D reconstruction
Following CAT3D [7], we evaluate our method on the Mip-
NeRF 360 dataset as shown in Tab. 2. Our approach outper-
forms existing methods across all metrics in the few-view
3D reconstruction setting.

Qualitative comparison in dimension-aware video gen-
eration Compared to Dream Machine 1.6, one of the
state-of-the-art closed source video generation models, our
method effectively decomposes the spatial and temporal
factors of the video diffusion model, as demonstrated in Fig.
10.

Camera control accuracy To evaluate the accuracy of the
camera control, following CameraCtrl [8], we provide a
quantitative assessment of the accuracy of the camera in the
Tab. 1. Our method achieves the lowest camera error in this
setting compared to other camera control methods.

Orbit + Zoom in Orbit + Zoom out

Figure 6. Camera Fusion. By flexibly integrating S-Director, our
method enables diverse and versatile camera control.

Controllable video generation We provide more results on
the controllable video generation in Fig. 15. Additionally,
we present the estimated camera trajectory of these gen-
erated videos, demonstrating the impressive controllability
of our approach. Furthermore, we present additional 360-
degree orbit video generations in Fig. 14. In addition, Fig.
6 shows that the flexible combination of LoRAs enables di-
verse camera control.
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Figure 7. User study for camera control.
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Figure 8. User study for 4D generation.

User Study As shown in Fig. 7, we conduct a user study
with experienced evaluators to assess camera controllabil-
ity. Evaluators were presented with anonymized video pairs
and asked to select their preference based on the specified
criteria. Our approach significantly outperforms previous
baselines in terms of controllability. Additionally, we per-
form a separate user study illustrated in Fig. 8, focusing on
evaluating the quality of generated 4D multi-view videos.
Evaluators similarly assessed anonymized video pairs ac-
cording to predefined criteria. Results indicate that our
method achieves superior video quality compared to exist-
ing baselines.
3D scene generation We provide more 3D scene generation
results, including the comparison with baselines in Fig. 16
and additional generated scenes of our approach in Fig. 17.
These results demonstrate that our DimensionX achieves
impressive 3D scene generation ability in real-world scenes.
4D scene generation We provide more 4D scene generation
results of our DimensionX in Fig. 18.
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Dream Machine 1.6 w. Camera MotionInput Image DimensionX (Ours)

Prompt: A stylish woman walks down a Tokyo street filled 
with warm glowing neon and animated city signage. She 
wears a black leather jacket, a long red dress, and black 
boots, and carries a black purse. She wears sunglasses and 
red lipstick. She walks confidently and casually. The street 
is damp and reflective, creating a mirror effect of the 
colorful lights. Many pedestrians walk about. Camera static.

Prompt: A majestic Siberian Husky stands atop a snowy 
mound, its sharp blue eyes filled with intelligence. The 
dog’s thick black-and-white fur contrasts against the soft 
twilight sky, where wisps of clouds drift peacefully. Bare 
trees surround the scene, standing as quiet guardians in 
the fading light. The dog stays still and the camera pull out.
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Prompt: Several giant wooly mammoths approach treading 
through a snowy meadow, their long wooly fur lightly blows 
in the wind as they walk, snow covered trees and dramatic 
snow capped mountains in the distance, mid afternoon light 
with wispy clouds and a sun high in the distance creates a 
warm glow, the low camera view is stunning capturing the 
large furry mammal with beautiful photography, depth of 
field. Camera orbit right.
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Figure 10. Qualitative comparison in dimension-aware video generation. Given the same image and text prompt, the first row is the
temporal-variant video generation (camera static), the second row is the spatial-variant video generation (object motion static while camera
zoom out), and the third row is the spatial- and temporal-variant video generation (camera orbit right).
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Prompt: A majestic white horse gallops 
gracefully across a lush, … The horse's focused 
eyes and determined expression convey a sense 
of freedom and unbridled spirit as it races 
through the verdant landscape.

Prompt: A man with tousled dark hair stands 
in a dramatic landscape, ... The visual style is 
cinematic with high contrast, enhancing the 
grim and powerful mood of the moment.

Prompt: A lone hiker, clad in vibrant orange 
pants and a blue jacket, …The serene beauty 
of the winter wonderland is palpable, as the 
hiker embarks on a journey through this 
tranquil, snow-kissed wilderness.

Figure 11. Ablation on Swtich-Once. We ablate our designed dimension-aware LoRAs fusion approach with the LoRA merge method.
The desired camera control is orbit right.
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"In the image, a small, adorable puppy with a white and tan 
coat is lying on a lush, green lawn. The puppy's large, 
expressive eyes gaze upward, capturing a sense of curiosity 
and innocence. Its ears are perked up, and its tiny paws are 
stretched out in front, as if it's ready to spring into action at 
any moment. The puppy wears a vibrant red collar with a 
shiny black buckle, adding a pop of color to its fluffy fur. 
Scattered yellow leaves around the grassy area hint at a gentle 
breeze, creating a serene and playful atmosphere. The overall 
scene exudes warmth and the simple joy of a sunny day spent 
outdoors. The dog keeps static and camera orbit left."

"In the mesmerizing nightscape, a colossal whale glides 
gracefully through the star-studded sky, its vast, textured body 
illuminated by the soft, ethereal glow of the moon. The city 
below, a sprawling metropolis of towering skyscrapers, 
twinkles with countless lights, creating a captivating contrast 
between the urban jungle and the serene marine giant. The sky, 
painted in deep shades of blue and adorned with twinkling stars, 
adds a dreamlike quality to the scene. The whale, seemingly in 
motion, appears to be swimming through the clouds, its 
majestic form a surreal and awe-inspiring sight against the 
backdrop of the illuminated cityscape. The whale moves 
forward and the camera keeps static."

"A vibrant red sports car drives along a winding coastal road, 
passing by a tall white lighthouse. The scene begins with a 
stationary aerial view, then the camera slowly descends and 
gradually pushes forward. As it approaches, the focus 
sharpens on the car, showcasing its sleek design amidst the 
picturesque shoreline. The background features rocky cliffs 
and crashing waves, bathed in warm golden sunlight, creating 
a dynamic yet serene atmosphere. The visual style is 
cinematic, highlighting the vibrant colors and the interplay of 
light and shadow, enhancing the overall sense of freedom and 
adventure. The camera orbit left."

Figure 12. Ablation on ST-Director for controllable video generation. Given the same image and text prompt, the first row is the
spatial-variant video generation (object static and camera orbit left), the second row is the temporal-variant video generation (camera static
and object moves), and the third row is the spatial- and temporal-variant video generation (camera orbit left).

w/o. Frame ExtensionInput Image w. Frame Extension

Figure 13. Ablation on frame extension for circular 3D scene generation. Given a single image, we compare the circular 3D scene
generation performance w. and w/o. frame extension. With the frame extension, our DimensionX can generate consistent 3D scenes with
high-quality renderings.
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Figure 14. More 360 Degree Orbit Video Results.
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Figure 15. Camera trajectory visualization of generated videos.
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Figure 16. Qualitative comparison in single-view 3D generation. Given a single image, our approach can create much better 3D scenes
compared with other baselines.
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Figure 17. More results of 3D scene generation. We present more 3D scene generation results in both single-view and sparse-view
settings.
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Figure 18. More results of 4D scene generation. DimensionX generates consistent and high-quality 4D scenes.
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