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1. Optimal Transmission Algorithm
We consider the optimal transport problem with entropy

regularization. Specifically, given two probability distribu-
tions µ and ν, we aim to find a joint distribution γ that min-
imizes the transportation cost from µ to ν, while adding an
entropy regularization term to encourage a more uniform
and smooth transport plan.

The standard problem of optimal transport is:

min
γ∈Γ(µ,ν)

∫
X×Y

c(x, y)dγ(x, y), (1)

where the set Γ(µ, ν) is the set of all joint distributions γ
that satisfy the marginal conditions, and c(x, y) is the trans-
port cost.

The goal of an optimal transmission problem with en-
tropy regularization is:

min
γ∈Γ(µ,ν)

(∫
X×Y

c(x, y)dγ(x, y)− ϵH(γ)

)
, (2)

H(γ) = −
∫
X×Y

γ(x, y) log γ(x, y)d(x, y), (3)

where H(γ) is the entropy term, which aims to prevent γ
from being too concentrated on specific points, thereby en-
couraging a ”smooth” transportation plan. ϵ is a hyperpa-
rameter that controls the strength of the regularization and
adjusts the weight of the entropy term.

First, we divide the objective function of the optimal
transmission problem into two parts: the transportation cost
part and the entropy regularization part. To deal with this
problem, we introduce the entropy term into the optimiza-
tion problem and simplify the problem by logarithmic trans-
formation.

Given the cost matrix C = [c(xi, yj)], where xi and
yj are the discretized sample points, and µ and ν are the
marginal distributions of the two distributions, we aim to
minimize the following objective by solving for the joint
distribution γ:

F (γ) =
∑
i,j

cijγij − ϵ
∑
i,j

γij log γij . (4)

To facilitate the solution, we introduce Lagrange multi-
pliers to rewrite the marginal constraints (i.e.,

∑
j γij = µi,∑

i γij = νj) as a dual problem. The Lagrange dual func-
tion is:

L(γ, u, v) =
∑
i,j

cijγij − ϵ
∑
i,j

γij log γij

+
∑
i

ui

∑
j

γij − µi


+
∑
j

vj

(∑
i

γij − νj

)
,

(5)

where ui and vj are the Lagrange multipliers, used to handle
the marginal constraints.

Taking the derivative of γij and setting it to zero, we
obtain the following optimization condition:

∂L

∂γij
= cij − ϵ log γij − ui − vj = 0, (6)

solved:

γij = exp

(
ui + vj − cij

ϵ

)
. (7)

Substituting the expression of γij into the dual problem,
we solve for ui and vj . The update rules for ui and vj are:

ui = log

 µi∑
j exp

(
ui+vj−cij

ϵ

)
 , (8)

vj = log

 νj∑
i exp

(
ui+vj−cij

ϵ

)
 . (9)

From the above derivation, we obtain the main steps of
the Sinkhorn algorithm: Initialize ui and vj ; Alternately
update ui and vj until convergence; Update γij using the
updated ui and vj . Repeat the preceding steps until conver-
gence.

The update of ui and vj involves summation over all i
and j, with a complexity of O(n2), where n is the num-
ber of samples. Therefore, the time complexity of a single
iteration is O(n2).

We referred to the methods of OTDA [1], MOT [3] and
OTA [2] in our algorithm design.

2. Experiments and Details
Joint Training. Sequence I shows the highest mAP

(74.3) and AP50 (97.8) on HRRSD, followed by good per-
formance on the other datasets. However, performance



mAP AP50 mAP AP50 mAP AP50 mAP AP50 mAP AP50 AP75

Sequence I HRRSD LEVIR DIOR DOTA Joint Test

Joint Training 74.3 97.8 61.7 88.6 48.7 77.0 36.3 62.1 44.4 71.2 47.3
Fine-tuning 36.6 71.5 22.1 50.0 26.8 59.5 32.6 61.0 31.3 60.3 30.0

ours 49.5 86.9 29.1 63.9 32.6 69.5 35.9 62.8 36.2 67.8 35.0

Sequence II LEVIR HRRSD DOTA DIOR Joint Test

Fine-tuning 29.8 58.4 46.6 79.3 19.6 47.4 42.5 71.7 24.5 58.4 14.4
ours 33.5 63.4 57.8 91.5 22.7 51.7 45.9 73.9 32.7 62.8 30.8

Sequence III DIOR DOTA HRRSD LEVIR Joint Test

Fine-tuning 16.4 41.0 15.3 33.6 36.3 58.4 56.4 76.5 14.8 36.6 8.2
ours 19.2 48.8 19.1 40.5 43.4 74.0 59.5 85.0 21.0 42.5 18.2

Table 1. Detailed data of sequential fine-tuning experiments.

Sequential Query Distillation Points ADSC Query Distillation Points

Figure 1. Visual comparison of distillation points for partial
queries: sequential distillation and our method.

drops on DOTA (36.3) and DIOR (48.7). Sequence II and
III both exhibit lower mAP values across all datasets, with
sequence II having particularly poor performance on the
Joint Test (24.5). The Joint Training approach, which uses
a more traditional training method, leads to stronger perfor-
mance in initial tasks but suffers from catastrophic forget-
ting when transferred to new tasks.

Fine-Tuning. Fine-tuning (without our approach) gen-
erally shows a substantial drop in performance, especially
on earlier tasks, with a notable decline in mAP and AP50,
such as on HRRSD and LEVIR. For example, on Sequence
I, fine-tuning leads to only 36.6 mAP and 71.5 AP50 on
HRRSD, while the AP50 drops drastically on DIOR and
DOTA (26.8, 32.6). This shows that fine-tuning struggles to
maintain performance across domains and shifts, especially
when transferring between datasets with differing charac-
teristics.

Ours. In Sequence I, our approach significantly outper-
forms both Joint Training and Fine-tuning methods, with an
mAP of 49.5 (up from 36.6 and 74.3, respectively) and an
AP50 of 86.9 (up from 71.5 and 97.8). Similarly, in Se-
quence II, we observe strong performance, with mAP val-

ues of 33.5 (up from 29.8 in fine-tuning), and the improve-
ment is visible across other datasets. In Sequence III, our
method again shows the best performance with mAP values
of 19.2, compared to 16.4 in fine-tuning. This trend is seen
across all sequences, indicating that our approach leads to
a more balanced transfer and a better overall performance
across different domain shifts.

3. Visualization
We have created a visual representation of the distilla-

tion points, as shown in Figure 1. If the fixed weights of
a one-to-one query vector are distilled based solely on the
index, knowledge transfer can be flawed due to query mis-
matches. Our ADSC method, however, employs a more
effective matching strategy and a many-to-many dynamic
weight matching criterion, enabling more efficient knowl-
edge transfer, transmitting richer semantic information, and
alleviating catastrophic forgetting.
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