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Supplementary Material

A. More details of our camera system
A.1. Hardware Design
We used two industrial cameras (MV-CS016-10UC) and
one event camera (Prophesee EVK4) to construct our cam-
era system, aiming to simultaneously capture blurred and
sharp frames. Additionally, we employed two hardware set-
tings to record paired blurred and sharp frames with differ-
ent exposure time ratios: 1) for an exposure time ratio of
3:1, we used two 50:50 beam splitters; and 2) for an expo-
sure time ratio of 9:1, we utilized a 50:50 beam splitter and
a 10:90 beam splitter. Furthermore, we equipped the event
camera with a sleeve to ensure that the optical path lengths
to all three cameras were consistent.

A.2. Geometric Alignment
Our hardware optical path design ensures that the images
captured by the three cameras are spatially aligned. How-
ever, due to hardware precision limitations and potential
misalignment during the capture process, further geomet-
ric alignment of the recorded content is necessary. Follow-
ing the previously described method [1, 2, 5], we utilize a
homography matrix to achieve alignment among the three
cameras.

First, for the two RGB cameras, before starting motion
video capture in each scene, we capture several still frames.
These still frames are then used for feature point matching
and homography matrix computation, allowing us to ob-
tain the correction parameters for the homography matrix
for each scene.

For the event camera and RGB camera, during the still
frame recording step, we introduce slight jitter to the event
camera to capture the corresponding edge information of
the scene. We then compute feature point matching and the
homography matrix using the processed event frames and
the still frames.

A.3. Photometric Alignment
We ensured that the light intensity entering the three cam-
eras is consistent through careful hardware design. The
specific details are as follows: In the setup with an expo-
sure time ratio of 3:1, the exposure time of the RGB cam-
era recording the blurred frames is three times that of the
RGB camera recording the sharp frames. To achieve this,
we placed an ND filter with an optical density (OD) of 0.5
in front of the blurred camera. With this configuration, the
amount of light accumulated during the exposure process
for both the blurred and sharp cameras is nearly equal. Ad-
ditionally, to maintain consistency in optical path length, we

installed an optical sleeve of the same length as the ND fil-
ter in front of the sharp camera. Furthermore, to ensure that
the light intensity received by the event camera matches that
of the blurred camera, we placed an ND filter with an OD
of 0.8 in front of the event camera. In the setup with an ex-
posure time ratio of 9:1, a 10:90 beam splitter ensures that
the blurred camera captures the same amount of light as the
sharp camera during the ninefold exposure duration. The
event camera is equipped with an ND filter of 1 OD value
to ensure that it receives the same incident light intensity as
the blurred camera. Both the blurred and clear cameras are
also fitted with optical sleeve of the same length as the ND
filters to guarantee consistent optical path lengths.

A.4. Postprocessing
Despite our efforts to ensure consistent light accumulation
during exposure through hardware constraints, such as us-
ing identical models of cameras and lenses and designing
the optical paths, and synchronizing the white balance of
the two RGB cameras through the capture software, we ob-
served some color discrepancies in the frames captured by
the two RGB cameras. To further correct this difference, we
employed a linear color correction model as [4] described.
Specifically, we use the following linear formula to align
the colors of the sharp frame S and blurred frame B:

αS + β ≈ B, (1)

where α and β are estimated using the following method:

α =
σ1

σ2
,

β = µ1 − αµ2.
(2)

In this equation, σ and µ represent the standard deviation
and mean of the frame, respectively. Due to the blurring of
the image affecting the color distribution, it is challenging
to obtain suitable mean and variance values directly from
the blurred image. Therefore, we compute these parameters
using static frames captured at the beginning of each scene.
We applied this alignment process to each color channel of
the images individually.

B. More details of implementations
B.1. Inplementation details
We train the EVDM without pre-training on 4 NVIDIA
3090 GPUs. For all datasets, We randomly crop patches
of size 128 × 128 for training frames and corresponding
event voxels, and the batch size is set to 8 by default. The
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Figure 1. The details of three modules applied in EVDM.
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Figure 2. The details of ConvFFN modules applied in EVDM.

AdamW optimizer is employed (β1 = 0.9 and β2 = 0.99)
with the initial learning rate 7 × 10−5 with the cosine an-
nealing schedule where the Tmax is 400K iteration. Our
method can accept video inputs of any length. To balance
performance and training efficiency, we use three consecu-
tive video frames as input, which means T is 3. Following
the configuration in [2], the number of event voxel bins is
set to 16 for the GoPro and EVRB datasets, while it is set to
10 for the T-RED dataset.

B.2. Datasets

GoPro: The GoPro dataset [3] is commonly used in the
motion deblurring field. For a fair comparison, we utilize
the raw event data provided in EFNet, which is generated
by the ESIM simulator with random thresholds. According
to the official division, 22 video sequences are used as the
training set, while 11 video sequences are used for testing.
EVRB: The EVRB dataset [2] contains 17 videos with a
resolution of 960 × 640, each of which is over 100 frames
in length and contains various motion modes. According to
the standard division, we use 11 sequences as the train set
and 6 sequences as the test set.
T-RED: The T-RED dataset consists of 15 videos for
training and 9 videos for testing. Each video includes
simultaneously captured blurred frames, sharp frames, and
corresponding event data, all at a resolution of 1024× 768.
Both the training and testing sets include sequences with
exposure time ratios of 1:3 and 1:9, capturing various
common motion processes in the real world.

C. More details of our EVDM.
In this section, we detail some modules in our EVDM
framework. Figure 1 illustrates the architecture of three
modules for EVDM:
Patch Embedding. This module processes inputs through
a 3D convolution (Conv 3d) layer followed by a
parametric rectified linear unit (PReLU).
ConvBlock. The ConvBlock consists of stacked Conv 3d
+ PReLU layers.
Lightweight Decoder. For pixel-wise reconstruction, this
module employs a 3D transposed convolution
(ConvT) layer. An optional refining Conv block en-
sures sharpness restoration while maintaining computa-
tional efficiency.

Figure 2 presents a channel-attention enhanced convolu-
tion feedforward network (ConvFFN):
ConvFFN. A sequential stack of Conv layers processes
input features, followed by a Channel Attention
module. This module dynamically weighs feature chan-
nels through Conv + Softmax operations, emphasizing
high-frequency information critical for sharp image recon-
struction. The progressive convolution design effectively
captures both global and local motion blur characteristics.
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Figure 3. Qualitative comparisons on the T-RED dataset. Zoom in for better view.

Figure 4. Data sample of T-RED.
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