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A. More Details
Merging strategy. The FLAME [3] team provides a pre-
defined template that specifies the facial region associated
with each mesh triangle. Building on this, we further cus-
tomized distinct facial regions, such as the teeth and inner
lips. Each Gaussian primitive is rigged to a triangle, en-
abling easy identification of splats within specific regions
using the binding information and template indices. To ob-
tain the complete result, the invisible regions of the prior-
based Gaussian are merged with the visible regions of the
prior-free Gaussian.
Teeth enhancement details. Given a specific expres-
sion (with the mouth fully open), we enhance the de-
tails of the inner mouth region by distilling the outputs of
HeadGAP’s[8] 2D enhancement network across multiple
virtual viewpoints. These outputs are used as pseudo labels
to supervise the model through L1 loss and SSIM loss.
In-the-wild data processing. BiRefNet[7] was utilized for
matting, while VHAP[4, 5] was employed for FLAME fit-
ting. Although VHAP is designed for monocular or multi-
view video sequences, it can still achieve accurate fitting for
static captures by relying solely on landmark matching loss
and photometric losses.

Input Method SSIM ↑ PSNR ↑ LPIPS ↓

1 image GAGAvatar 0.833 17.52 0.241

FlashAvatar 0.837 20.43 0.213
15 images HeadGAP 0.886 23.25 0.147

Ours 0.890 25.03 0.113

Table A. Quantitative comparison across 30 subjects.

B. Additional Results and Visualization
We have carried out additional experiments under 802×550
resolution conditions on 30 subjects, comparing with the
representative Gaussian-based methods GAGAvatar[2] and
FlashAvatar[6]. The average metrics are summarized in Ta-
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Figure A. Self-reenactment results.

ble A, and the visualization is provided in Figure A. As
GAGAvatar supports only single-view input, we used the
front view as the input; the results are thus only for ref-
erence. The results demonstrate that our method achieves
superior performance in terms of identity preservation, ex-
pression fidelity, and the level of detail representation.
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C. Additional Discussion
Effect of driving signal noise. Our method significantly
enhances the visual quality of details. However, mis-
matches between the images and the FLAME mesh in the
test data limit the capability of PSNR and SSIM metrics
to fully capture this improvement. As shown in Figure B,
although the rendered image and the ground truth appear vi-
sually similar, noticeable misalignments caused by noise in
the FLAME parameters be-
come evident when overlaid.
As noted in [1], while PSNR
and SSIM are highly sensi-
tive to pixel misalignments,
LPIPS demonstrates greater
robustness by measuring dif-
ferences in deep feature rep-
resentations.
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Figure B. Misaligned.

The impact of registration-aware regularization terms.
The regularization terms that we designed specifically ad-
dress irregularities in dynamic details. These anomalies
exhibit distinct characteristics: they are exclusively asso-
ciated with specific expressions, become noticeable only
from certain viewpoints, and occupy a very small region of
the image. This leads to slight metric variations in Table 2
which record the average metrics. However, Figure 5 in the
main paper offers a clearer and visual demonstration of how
the regularization terms effectively mitigate these dynamic
anomalies, thereby improving overall quality and preserv-
ing finer details across different expressions and viewpoints.

Input: 5 images
PSNR: 24.87
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PSNR: 26.46
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Figure C. Results with different numbers of input viewpoints.

Influence of input quantity. As discussed in the limita-
tions section of the main manuscript and further illustrated
in Figure C, our method demonstrates satisfactory perfor-
mance when five or more views are provided as input. Com-
pared to reducing the amount of input, we focus more on
how to leverage higher-resolution images to achieve more
detailed geometric and texture modeling in few-shot sce-
narios. A potential solution for further reducing the number
of input views is to incorporate more advanced sparse Gaus-
sian splatting techniques. Moreover, enabling the model to

reconstruct 3D head avatars from inconsistent inputs, such
as imperfect smartphone-captured images with slight unin-
tentional motion, represents a promising direction for future
research.
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Figure D. Limitation of our method.

Failure Cases. Since the texture modeling is based on static
inputs with a near-neutral expression rather than a multi-
expression video sequence, our method encounters chal-
lenges in effectively capturing wrinkles, as shown in Fig-
ure D. Furthermore, due to the limitations of the Gaussian-
on-mesh driving paradigm, our method is unable to handle
components not modeled by FLAME, such as eyeglasses,
as illustrated in Figure E.
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Figure E. Failure Cases.
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