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1. Additional Results
1.1. More Real-world Results

We provide more real-world results under the public data [3,
4] and self-captured data. The reconstructed results from dif-
ferent approaches are shown in Fig. 3 and Fig. 4. Compared
with other approaches, our approach successfully recovers
the clear boundary and full details for each scene, which
demonstrates the effectiveness of our proposed method.

1.2. More Ablation Results

In this section, we provide additional ablation study results
on both the synthetic dataset and public real-world data to
demonstrate the contributions of each module.
Quantitative experiments. As can be seen in the Tab. 2,
integrating two modules achieves the best performance. To
clarify the improvement from our design compared to dif-
ferent fixed parameter settings, we ablate LPC in Tab. 3 by
replacing it with varying fixed compensation weights, and
ablate APF in Tab. 4 by replacing it with varying o. The
above results show that LPC and APF achieve the best per-
formance, which confirms the effectiveness of each module.
Qualitative ablation under real-world data. As shown in
Fig. 5, the LPC contributes more details of the object, while
the APF suppresses background artifacts. The integration of
both modules yields the best results.

1.3. Generalization Evaluation

We provide additional quantitative results to validate the
generalization of the approach. In Section 4.3, we present
results under different photon acquisition efficiencies. Un-
like those settings, in this section, we add different Poisson
noise to affect the SNR of the transient measurements. As
can be seen in Table 1, in most cases, our approach achieves
the best results compared to other approaches. This demon-
strates that our network effectively compensates for photon
acquisition and reduces noise, resulting in more robust and
clearer reconstructed images.
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Figure 1. Visualization of the standard deviation predicted by APF.
Different colored lines in the figure illustrate how the predicted
standard deviation varies under different SNR conditions.

Figure 2. Our own NLOS imaging system.

1.4. Visualization of Standard Deviations

In this section, we provide visualization results of the stan-
dard deviation from APF. We randomly select 30 transient
measurements from the Seen test set. A lower standard de-
viation of the Gaussian window in the frequency domain
typically indicates a narrower frequency response, leading



Table 1. Quantitative results on the Unseen test set under different SNRs by adding varying Poisson noise. The best in bold, the second in

underline.
Intensity (PSNRT / SSIM1) Depth (RMSE] / MADJ)
Method
15dB 5dB 1dB 15dB 5dB 1dB

LCT 17.86/0.1750 17.76 /0.1301 17.56 /0.1050 0.6545/0.6120 0.7648 /0.7370 0.7906 / 0.7694
FK 20.57 /1 0.5900 20.56 /0.5867 20.56/0.5815 0.8059/0.8038 0.7684 /0.7658 0.7466 / 0.7429
RSD 20.06 /0.1655 19.60/0.1111 18.83/0.0833 0.5474/0.5134 0.6908 / 0.6610 0.7185/70.6919
LFE 21.86/0.6489 21.87/0.6353 21.69/0.5877 0.2881/0.1588 0.2882/0.1589 0.2892/0.1613
I-K 21.74/0.7676 21.67/0.7315 21.56/0.6740 0.2788 /0.1484 0.2797/0.1557 0.2818/0.1670

NLOST 21.93/0.7716 21.62/0.7337 21.81/0.6533 0.2659/0.1296 0.2715/0.1292 0.2634/0.1401
Ours 22.73/0.7950 22.52/0.7741 22.29/0.7187 0.2645/0.1291 0.2625/0.1308 0.2623 / 0.1361

Table 2. Ablation results of each module under the Seen test set. The best in bold.

LPC/ APF Xl X VI X

Xl v IV

PSNR/SSIM  23.31/0.8431

23.69 / 0.8606

23.72/0.8603  24.08/0.8704

RMSE/MAD 0.0987/0.0423 0.0957/0.0397 0.0914/0.0348 0.0867 / 0.0307

Table 3. Ablation results between fixed coefficient weights and proposed LPC module. The best in bold.

coeff =1

coeff =2

coeff =4 LPC

PSNR /SSIM  23.25/0.8397

23.31/0.8431
RMSE/MAD 0.0979/0.0438 0.0987/0.0423

22.9870.7940  23.69/0.8606
0.1132/0.0626  0.0957 / 0.0397

Table 4. Ablation results between fixed ¢ and proposed APF module. The best in bold.

o=0.25

c=0.3

o=0.35 APF

PSNR/SSIM  23.05/0.8208

23.31/0.8431
RMSE/MAD 0.1028/0.0457 0.0987/0.0423

23.30/0.8174  23.72/0.8603
0.1014/0.0487 0.0914 / 0.0348

Table 5. Quantitative results under varying resolution settings. The approach is trained under the resolution of 256x256.

Resolutions 64 x 64

128128

256 %256 512x512

Mem/Time 1.5GB/0.02s

5.2GB /0.04s

16GB /0.11s  66GB /0.57s

to stronger high-frequency noise suppression. As shown in
Fig. 1, the standard deviation exhibits a decreasing trend
as the SNR decreases, which means APF predicts a tighter
Gaussian window for features to filter out more noise.
Furthermore, although numerous values exhibit only mi-
nor fluctuations, the superior performance demonstrated in
Tab. 4 confirms the necessity of the proposed learning strat-

egy.
1.5. Scaling to Other Resolutions

Our approach is trained with a resolution of 256x256, but
it is capable of scaling to other resolutions. The results for
scaling to varying resolutions are shown as Tab. 5, demon-
strating that our approach can handle both high-resolution
data and real-time settings with reasonable efficiency.

2. Imaging Setup

System details. Details of our system are shown in Fig. 2.

Capturing details. The materials in the self-captured scenes
can be divided into two types: retro-reflective type (e.g., a
bookshelf, and the letters ‘NYLT’ covered with reflective

tape) and diffuse type (e.g., the number ‘2’ covered with
white printer paper, a cardboard printed with ‘123XYZ’, and
the plaster statues).

3. Details of the Network Structure

Feature extraction module. Given transient measurements
as input, the feature extraction module is responsible for
downsampling and extracting feature vectors, as well as
enhancing the transient measurements. As described in
LFE [1], the module consists of two branches. The first
branch contains a convolutional layer (kernel size = 3, stride
= 1), while the second branch contains a ResNet block [2].
Each ResNet block includes two convolutional layers and
one LeakyReLU layer. The output feature dimension of each
branch is 1, and the spatial size of the output is 4 x smaller
than the input data. The two branches are concatenated along
the feature dimension and then output.

Spectrum convolution. Firstly, the features of the transient
measurements are transformed into the frequency domain
using a Fourier transform. Subsequently, a series of 3D
convolutional layers with a stride of (1, 2, 2) is applied to
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Figure 3. Visualization comparison on the public real-world data [4]. The left annotation indicates the total acquisition time.
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Figure 4. Visualization comparison on the self-captured real-world data. The left annotation indicates the total acquisition time.
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Figure 5. Ablation results on public real-world data. Baseline denotes w/o LPC and APF modules.




reduce the spatial dimensions of the feature vectors, with
each convolutional layer followed by a ReLU activation
layer. The extracted features are then processed using a
1D convolutional layer, normalized with LayerNorm, and
passed through a fully connected layer to fuse the spectrum
dimension into a scalar value. Finally, a sigmoid activation
computes the desired standard deviation.

Wave propagation module. We utilize the physics-based
approach RSD [5, 6] as a wave propagation module. The
module transforms the features from the spatial-temporal
domain into the linear spatial domain.

Rendering module. The rendering network consists of one
convolutional layer and two custom convolutional blocks [1].
Each convolutional block includes one convolutional layer
and two ResNet blocks. The structure of the ResNet blocks
is the same as in the feature extraction module. The net-
work takes the output from the wave propagation module
as input and applies the first convolutional block to obtain
enhanced features. Next, the enhanced features are concate-
nated with the input features along the spatial dimension
and processed by the second convolutional block. To ensure
more stable training, we employ a residual structure, where
the output of each convolutional block is added to the input
features, producing the final output of the rendering module
(i.e., intensity and depth images).

4. Discussion for the non-confocal system

Eq. (17) in [6] shows o of the Gaussian-shaped illumination
function is determined solely by the virtual source and re-
mains unchanged across systems. Thus, APF also applies
unchanged to non-confocal setups. Moreover, since LPC
depends on distances between illumination and detection
points, retraining on non-confocal transients suffices for ex-
tension. In summary, the proposed method is theoretically
applicable under the non-confocal setting.
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