
Appendix
A. BLO framework of WATER4MU for image

generation

In the context of prompt-wise forgetting in image generation,
the BLO problem for WATER4MU can be also cast as (5):

minimize
ψ,ϕ

L̂(ψ,ϕ,θu(ψ))

subject to θu(ψ) = argminθ Lmu(θ; D̂f , D̂r),
(A1)

In the lower-level optimization, we first obtain the water-
marked dataset for unlearning. Then, we extend the use
of Random Label (RL) to the image generation context for
unlearning concept c. Also, to maintain the generation ca-
pability of the model, we introduce the regularization loss
on the watermarked retain set. Finally, we can obtained an
unlearned model θu:

θu(ψ) = argmin
θ

Ex∈D̂f ,t,ϵ
[||ϵθ(xt|c′)− ϵθ(xt|c)||22]

+Ex∈D̂r,t,ϵ
[||ϵ− ϵθ(xt|cr)||22], (A2)

where c′ ̸= c, cr is the prompt of x ∈ D̂r, D̂f (or D̂r) denotes
the watermarked forget (or retain) dataset, θ is the pretrained
generative model and β is a regularization parameter.

The design of the upper-level optimization follows (4):

L̂(ψ,ϕ,θu(ψ)) :=Lmu(θu(ψ);Df ,Dr)︸ ︷︷ ︸
(a) Unlearning validation

+ Lwm(ψ,ϕ;m,Df ∪ Dr)︸ ︷︷ ︸
(b) Watermarking validation

, (A3)

where ℓmu is defined in (A2) and Lmu(θu(ψ);Df ,Dr) is
to validate the lower-level unlearned model θu(ψ) on the
unwatermarked dataset, and ℓwm is the training loss of the
watermarking network.

B. Additional Experiment Setup

B.1. WATER4MU for image classification
For the exact unlearning method Retrain, the training process
comprises 182 epochs, utilizing the SGD optimizer with a
cosine-scheduled learning rate initially set to 0.1. For FT,
the unlearning process takes 10 epochs, during which the
optimal learning rate is searched within the range of [10−3,
10−1]. For GA, the unlearning process spans 5 epochs with
the interval [10−5, 10−3]. Regarding the method Sparse, the
unlearning-enabled model updating process also takes 10
epochs, searching the optimal sparse ratio in the range [10−6,
10−4] and exploring learning rate within [10−3, 10−1]. Fi-
nally, for IU, the parameter α (associated with the Wood-
Fisher Hessian Inverse approximation) is searched within
the range [1, 20].

B.2. WATER4MU for image generation
We follow the settings in the UNLEARNCANVAS benchmark,
selecting 20 objects and 50 styles for unlearning. The β
is set at 0.5, with a batch size of 1. The sampling settings
involve the use of DDPM, 100 time steps, and a conditional
scale of 7.5.

C. Additional Experiment Results
C.1. Ablation study
The computational costs of WATER4MU. We measure
the run-time efficiency (RTE) of applying an MU method,
i.e., its computation time. In Tab. A1, we compared the RTE
of different methods with and without using WATER4MU on
(CIFAR-10, RESNET-18). As we can see, the introduction
of WATER4MU does not hamper the computation efficiency,
highlighting its practicality.

Table A1. Performance of RTE (min) of different unlearning
methods under unwatermarked forget/retain sets (Original) and
WATER4MU-induced watermarked forget/retain sets on (CIFAR-
10, RESNET-18) for class-wise forgetting.

MU Retrain GA FT Sparse IU

Original 42.35 0.25 2.50 2.52 3.25

WATER4MU 49.93 0.30 3.07 3.09 3.98

Choice of λ in diagonalization approximation of the
Hessian matrix. We next examine the hyperparameter
λ in Hessian’s diagonalization approximation in (8) for
WATER4MU. In our experiments, the default setting is
λ = 10−2. We conduct a more detailed examination of
λ in Fig. A1. We can observe that λ = 10−2 is a reasonable
option, and higher or lower value of λ would reduce the
effectiveness of WATER4MU.
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Figure A1. Unlearning effectiveness (in terms of UA and MIA) of
GA and FT against the choice of λ in WATER4MU for class-wise
forgetting under (CIFAR-10, RESNET-18).

Decoding performance of WATER4MU. While WA-
TER4MU enhances the unlearning effectiveness, the decod-
ing performance of WATER4MU as a watermarking method
should also be maintained. We then use BER (Bit Error
Rate) to measure the performance of WATER4MU to decode



Table A2. Performance of different unlearning methods under unwatermarked forget/retain sets (Orignal) and WATER4MU-induced
watermarked forget/retrain sets on (CIFAR-100, RESNET-18) and (SVHN, RESNET-18) for class-wise forgetting.

Metric Retrain GA FT
Original WATER4MU Diff Original WATER4MU Diff Original WATER4MU Diff

Class-wise forgetting, RESNET-18, CIFAR-100

UA 100.00±0.00 100.00±0.00 0.00- 83.67±0.78 90.46±0.43 6.33▲ 24.73±2.63 29.56±2.78 4.83▲
MIA 100.00±0.00 100.00±0.00 0.00- 91.51±2.66 98.22±0.12 6.71▲ 45.61±0.3.31 50.36±2.09 4.75▲
RA 99.98±0.01 98.87±0.05 1.11▼ 91.56±0.54 88.32±1.18 3.24▼ 99.18±0.26 99.03±0.72 0.15▼
TA 74.43±0.23 72.89±0.13 0.16▼ 65.79±0.69 64.61±0.19 1.18▼ 74.33±0.14 72.50±0.27 1.83▼

Class-wise forgetting, RESNET-18, SVHN

UA 100.00±0.00 100.00±0.00 0.00- 83.29±0.42 89.07±0.13 5.78▲ 16.98±4.60 29.84±3.75 12.86▲
MIA 100.00±0.00 100.00±0.00 0.00- 98.23±0.38 99.61±0.09 1.38▲ 85.57±2.32 90.10±0.69 4.53▲
RA 100.00±0.00 99.96±0.02 0.04▼ 99.51±0.21 98.16±0.79 1.35▼ 100.00±0.00 98.64±0.56 1.36▼
TA 95.82±0.04 94.86±0.07 0.96▼ 95.33±0.19 94.16±0.08 1.17▼ 95.95±0.18 95.76±0.22 0.19▼

Table A3. Performance of different unlearning methods under unwatermarked forget/retain sets (Orignal) and WATER4MU-induced
watermarked forget/retrain sets on (CIFAR-10, SWIN TRANSFORMER) and (CIFAR-10, RESNET-50) for class-wise forgetting.

Metric Retrain GA FT
Original WATER4MU Diff Original WATER4MU Diff Original WATER4MU Diff

Class-wise forgetting, SWIN TRANSFORMER, CIFAR-10

UA 100.00±0.00 100.00±0.00 0.00- 45.96±0.67 55.43±0.50 9.47▲ 94.89±1.56 99.80±0.17 4.91▲
MIA 100.00±0.00 100.00±0.00 0.00- 58.40±1.03 64.82±1.89 6.42▲ 97.86±1.21 99.68±0.10 1.82▲
RA 100.00±0.01 99.71±0.07 0.29▼ 99.85±0.26 99.72±0.17 0.13▼ 95.01±1.26 93.45±0.92 1.56▼
TA 85.63±2.10 85.34±1.27 0.29▼ 85.67±1.04 85.32±1.41 0.35▼ 80.58±2.16 78.32±1.67 2.26▼

Class-wise forgetting, RESNET-50, CIFAR-10

UA 100.00±0.00 100.00±0.00 0.00- 36.76±1.28 50.00±0.79 13.24▲ 42.16±2.63 59.83±2.11 17.67▲
MIA 100.00±0.00 100.00±0.00 0.00- 59.60±0.65 77.66±1.03 18.06▲ 58.35±1.53 67.75±1.93 9.40▲
RA 100.00±0.00 100.00±0.00 0.00- 99.84±0.08 99.53±0.19 0.31▼ 98.76±0.14 99.15±0.23 0.39▲
TA 94.13±1.20 94.02±0.98 0.11▼ 93.67±0.72 93.12±1.57 0.55▼ 90.36±1.63 90.96±1.49 0.60▲

Table A4. Number of nude body parts detected by Nudenet on I2P
dataset with threshold 0.6.

Method Breast Genitalia Buttocks Feet Belly Armpits Total

SD v1.4 229 31 44 42 171 129 646
ESD 22 6 5 24 31 33 121
FMN 172 17 12 56 116 42 415
UCE 50 14 11 20 55 36 186

WATER4MU 29 15 5 10 29 21 109

the watermark message m. In our experiments, we set the
message length L to 10 by default. We evaluate the decoding
performance of HIDDEN used by WATER4MU. We find
that its average BER is merely 2.78 × 10−8 compared to
1 × 10−8 using the standard HIDDEN w/o taking into ac-
count MU. This indicates that WATER4MU preserves the
watermarking network’s encoding-decoding capabilities.

C.2. Additional class-wise forgetting results
As an expansion of Tab. 1, Tab. A2 presents the perfor-
mance of class-wise forgetting with and without the inte-
gration of WATER4MU on the additional setups (CIFAR-
100,RESNET-18) and (SVHN,RESNET-18). Also, Tab. A3
shows the performance of class-wise forgetting on the
setups (CIFAR-10,SWIN TRANSFORMER) and (CIFAR-
10,RESNET-50) to further validate the scalability of
WATER4MU. Notably, the WATER4MU-integrated unlearn-
ing methods demonstrate enhanced unlearning performance
across both datasets and models, as evidenced by improve-
ments in UA and MIA metrics. This improvement effectively

balances model utility preservation, as reflected in RA and
TA scores. Importantly, the gains in unlearning performance
outweigh the losses in utility. These observations are consis-
tent with the findings reported in Tab. 1.

C.3. Effect of Watermark Message Selection in WA-
TER4MU.

In Fig. A2, we present the performance of the optimized wa-
termark message, i.e., selecting the watermark message most
favorable for unlearning, as described in Sec. 5. As shown,
using the optimized watermark message in WATER4MU fur-
ther enhances unlearning effectiveness (UA and MIA) with-
out causing any degradation in model utility (TA and RA).
This improvement is particularly notable when compared to
the use of random watermark messages in WATER4MU.

We also provide additional results on the impact of water-
mark message selection on Retrain. Extended from Fig. A2,
Fig. A3 presents the performance of the optimized watermark
message on the exact unlearning method, Retrain. As we can
see, using the optimized watermark message in WATER4MU
also enhances unlearning effectiveness of Retrain without
causing any degradation in model utility, when compared to
the use of random watermark message in WATER4MU.

C.4. Evaluation on image generation safety tasks.
We conduct experiments on the Inappropriate Image Prompts
(I2P) dataset. Our evaluation focuses on the erasure of nudity.
A total of 4703 images are generated with I2P prompts for
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Figure A2. Performance of the optimized watermark message in
WATER4MU. We choose GA as the unlearning method and com-
pare the unlearning performance among MU without WATER4MU,
MU with WATER4MU and MU with WATER4MU and optimized
watermark message.
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Figure A3. Performance of Retrain using the optimized water-
mark message in WATER4MU vs. baselines including MU without
WATER4MU and MU with WATER4MU (but implemented using
random watermark message).
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Figure A4. Qualitative results of nudity removing. All prompts
originate from I2P dataset. The images in the top row are generated
by SD, while the images in the bottom row are generated by MU
with WATER4MU.

each model. Then, Nudenet is introduced to detect nude
body parts in these images. As shown in Tab. A4, we present
the number of detected nude body parts across six categories.
WATER4MU achieves the best performance in preventing
the generation of nude content, reducing the total instances

from 646 to 109. We provide more examples on the erasure
of the nudity concept in Fig. A4.

D. Limitations
While WATER4MU demonstrates promising unlearning ef-
fectiveness, the introduction of the watermarking network
and the computation of higher-order derivatives in the BLO
process will both incur additional training overhead. Further
work is needed to assess the scalability of WATER4MU to
larger datasets and models, particularly in enhancing the
efficiency of the bi-level optimization process used for wa-
termarking design.
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