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A1. Additional Experiments
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Figure A1. (Left) Runtime comparison between kgeo and GravLensX. 100 points are sampled for each ray. (Right) Frechet distances
between paths using FP32 and FP64.

kgeo is an implementation of Gralla and Lupsasca [4]’s work that provides a fast and accurate solution to the null geodesic
equations in Kerr spacetime with elliptic integrals. For single-black-hole scenario, we benchmarked kgeo on a Xeon Gold
5218 CPU by launching 16 parallel processes to fully utilize all cores, and compared this to GravLensX on a single NVIDIA
RTX 3090 GPU. GravLensX yields speed-ups of roughly 3.8× to 17.2× (see Figure A1 Left). More importantly, for the
multi-black-hole scenarios we consider in our paper leveraging the superposed Kerr metric, Gralla and Lupsasca [4]’s theory
cannot be utilized.

A2. Implementation Details
We set Ncoarse = Nfine = 10. Rbh is set as 20. Detailed parameters for generating data are listed in Tab. A1. Taichi [5] and
PyTorch [1] are used to render the black hole systems and train the neural networks.
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Table A1. Parameters of generating geodesic data.

System P bh M bh Abh lin lout in-black-hole radius

2 Black Holes (-30, 0, 0), (30, 0, 0) 1, 1 1, 1 1.6 100 1.8
3 Black Holes (30, 10

√
3, 0), (−30, 10

√
3, 0), (0,−20

√
3, 0) 1, 1, 1 1, 1, -1 2.2 100 2.25

As for the training process, we use MLPs with 12 hidden layers and residual connections, employing SoftPlus as the
activation function. For the near field network, each layer contains 200 neurons. For the far field network, each layer has
128 neurons in the 2-black-hole system and 200 neurons in the 3-black-hole system. The learning rate is set as 0.001 with
default Adam optimizer. We trained the far-field network on 4 RTX 3090 GPUs and the near-field network on single RTX
3090. The time for generating data and training the model on RTX 3090 is around 13.8 GPU hours for every near-field NN
and 33.5 GPU hours for the far-field NN. For the 3-black-hole scenario, this is equivalent to rendering a 63 minutes video in
30 FPS with Euler method. For more complex systems, the training time grows linearly with the number of black holes. We
did not investigate much on the training acceleration, and we believe the training time can be largely reduced by using more
advanced optimizers, model structures, etc.

A3. Superposed Black Hole Metric
Black hole metric, e.g. Schwarzschild metric [9], is the solution to Einstein field equations under certain assumptions. We
primarily utilize the Kerr metric [7] that describes a rotating black hole to characterize the black hole system, as adopted by
earlier studies [2, 6, 8]. Kerr metric in Cartesian coordinates is defined as

ds2 = −dt2 + dx2 + dy2 + dz2 +
2mr3

r4 + a2z2

Å
dt+

r(x dx+ y dy)

a2 + r2
+

a(y dx− x dy)

a2 + r2
+

z

r
dz

ã2
, (A1)

where the Boyer-Lindquist radius r is implicitly given by

x2 + y2 + z2 = r2 + a2
Å
1− z2

r2

ã
. (A2)

m and a are the mass and the angular momentum of the black hole, respectively. t, x, y, and z are the coordinates in the
spacetime. ds represents an infinitesimal spacetime interval, which captures the separation between two nearby events in
spacetime. With Equation (A1), The metric tensor for these four coordinates can be calculated as

gab = ηab +
2mr3

r4 + a2z2
ℓaℓb, (A3)

with

ℓ =

ï
1,

rx+ ay

r2 + a2
,
ry − ax

r2 + a2
,
z

r

òT
, (A4)

where ηab is the Minkowski metric tensor. We use an affine parameter λ to parameterize the geodesic as done by d’Ascoli
et al. [3] and Porter et al. [8]. Let p = [t, x, y, z]T denote the spacetime coordinates. The geodesic equation can be written as

d2pµ

dλ2
+ Γµ

αβ

dpα

dλ

dpβ

dλ
= 0 (A5)

in which λ is the affine parameter, ensuring the path is parameterized in a way that preserves the affine properties of the
curve. Γµ

αβ is the Christoffel symbol describing how coordinates change in curved spacetime, which can be calculated from
the metric tensor as

Γµ
αβ =

1

2
gµν
Å
∂gνα
∂pβ

+
∂gνβ
∂pα

− ∂gαβ
∂pν

ã
, (A6)

where gµν is the inverse of the metric tensor, satisfying

gµνgνα = δµα =

®
1 if µ = α

0 if µ ̸= α
(A7)



Calculating the partial derivative term in the Christoffel symbol is the most computationally expensive part in solving the
geodesic equation. In order to calculate the second order derivative of each coordinate w.r.t. λ in Equation (A5), we need to
obtain the derivative of the time coordinate w.r.t. λ, dt

dλ . According to the general relativity, light travels along null geodesics,
indicating that the derivatives of the four coordinates p satisfy

gµν
dpµ

dλ

dpν

dλ
= 0. (A8)

Solving this equation yields dt
dλ . By discretizing the λ and iterately solve the spacetime coordinate at each lambda step.

A4. Proof for lstraight ≤ lgeodesic and Its Convergence

A

B

P

P’

O

(a) (b)

A O

B’

C

(c)

Figure A2. Different cases of intersections.

Suppose a ray is casted from point A to point B in the near-field region with radius R centered at O, where B is its first
crossing point to the boundary. The nonzero acceleration d2r/dλ2 < 0 caused by gravity bends the ray towards the center.
d is the initial direction of the ray and P is the point where the straight line from position P with direction d intersects the
boundary.

Proposition A4.1. Let LAB be the length of the ray from point A to point B. The following inequality holds:

LAB ≥ |AP |. (A9)

Proof. Consider the plane expanded by points A, O, and B. Let P ′ be the reflection of P across line AO.

Case 1: Point B is on the arc P̄P ′ As shown in Figure A2a, through cosine law, we have

|AP | = R2 + |AO|2 − 2R|AO| cos(∠AOP ),

|AB| = R2 + |AO|2 − 2R|AO| cos(∠AOB).

Clearly, ∠AOB ≥ ∠AOP , which implies LAB ≥ |AB| ≥ |AP |, where the latter equality only holds when B is on P
or P ′.

Case 2: Point B is not on the arc P̄P ′ As shown in Figure A2b, extending line AO intersects the trajectory AB firstly at
point B′. Assume the crossing point B′ lies on AO (see Figure A2c). Draw line OC through point O such that OC
is tangent to curve AB′, with C being the point of tangency. Denote the position and speed of the curve at point C as
pc = (xc, yc)

T, vc = (−k · xc,−k · yc)T in which k is a constant value, as its direction is parallel to the tangent line
across the coordinates origin. Also, the acceleration is parallel to the direction vc, thus the trajectory of the ray after C
should be a straight line pointing towards O. This contradicts our assumption that the curve would continue bending
until it reaches AO at B′, leading to the conclusion that B′ cannot lie on AO and should instead intersect the extension
of line AO towards the O end. Now we have

LAB = LAB′ + LB′B ≥ |AO|+ |OB′|+ |B′B| ≥ |AO|+ |OB| ≥ |AP |.



In our method, we iteratively step over the ray path to conduct ray tracing. We denote the start point and direction as A0

and d0. At each step, we calculate the length of A0P0, where P0 is the point of intersection between the boundary and the
straight line cast from A0 in the direction of d0. Then we step with length s0 = |A0P0| on the ray path and obtain next point
A1 and direction d1. This iteration process is conducted until the point is sufficiently near to the boundary, i.e., sufficiently
close to B.

Proposition A4.2. Given a point on a ray path influenced by the gravity in the near-field, we have

lim
T→∞

T∑
t=0

st = LA0B . (A10)

Proof. Through our definition, we have
st ≥ 0, ∀t ∈ N.

By Proposition A4.1, it holds that
T∑

t=0

st ≤ LA0B < +∞, ∀T ∈ N,

indicating that
∑T

t=0 st converges, and
lim
t→∞

st = 0.

Assume r := LA0B −
∑∞

t=0 st > 0, pick B′ on the path so that LB′B = r. Clearly At converges to B′ as t increases, and it
holds that

lim
t→∞

st = sB′ ,

in which sB′ is the distance from B′ to the boundary across its tangent line. As B′ does not overlap with B,

lim
t→∞

st = sB′ > 0,

this contradicts to the aforementioned condition, therefore r > 0 does not hold, implying that

∞∑
t=0

st = LA0B .
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