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1. Why Using Event Camera for Low-Light
Image Enhancement?

Event cameras, with their distinct advantages, have been
widely utilized to enhance RGB images captured by con-
ventional image sensors, contributing to tasks such as de-
blurring [7, 11, 13], video frame interpolation [14, 15], and
high-dynamic-range (HDR) imaging. In this work, we aim
to transfer the low-light responsiveness and HDR imag-
ing capabilities of event cameras to RGB sensors. Look-
ing ahead, as dynamic vision sensors (DVS) become inte-
grated into mass-produced cameras, they are expected to
play a significant role in advancing various aspects of im-
age enhancement. With a mechanical shutter, our method
can seamlessly integrate with the traditional image exposure
process, enabling widespread application across various de-
vices equipped with DVS.

2. More Details about T2I Module
In our Low-Light Degradation model, in the synthetic
temporal-mapping events from ground-truth normal-light
images, we introduce latency to the original timestamps in
the temporal domain, which is inversely proportional to the
intensity of the image. In the dark area of the images, some
event timestamps may be clipped to the maximum time, re-
sulting “dead pixel” in the images. e.g., 40% of the pixels
with grayscale values below 10 in an 8-bit image are ran-
domly set to 0. The contrast threshold c is randomly sam-
pled from N (0.2, 0.08).

To model blurriness, we define the kernel size as a dis-
crete uniform variable, randomly chosen from {7 × 7, 9 ×
9, . . . , 21 × 21}. For the isotropic Gaussian blur, the kernel
width is sampled from a uniform distribution within [0.05,
2.8]. In the case of anisotropic Gaussian blur, the rotation
angle follows a uniform distribution over [0, π], while the
axis lengths are independently drawn from [0.5, 6].
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For downsampling, we randomly apply either bicubic or
bilinear interpolation to reduce the image to a randomly
chosen scale within [1/2, 1] of its original size, followed
by upsampling back to the original resolution.

For Gaussian-Poisson hybrid noise, we random sample
the σ for Gaussian noise from [1/255, 25/255] and the σ for
Poisson noise in [1, 10].

All the processes above are different from
EvTemMap [1]. Besides, we also differ our T2I mod-
ule with EvTemMap from estimating Illumination instead
of the pixel values directly.

3. Qualitative Results for Ablation Study
Compared to the baseline method without event infor-
mation, our final results exhibit enhanced texture quality
and more accurate illumination estimation, demonstrating
the effectiveness of incorporating temporal-mapping events
for low-light image enhancement. Furthermore, the well-
estimated illumination map, along with the Illumination-
aided Reflectance Enhancement (IRE) module, signifi-
cantly refines the reflectance component R, reducing under-
exposed regions. The improvement in both I (illumination)
and R (reflectance) collectively contributes to a more visu-
ally compelling final result.

Additionally, compared to the variant without the pro-
posed LLDM, our method exhibits superior noise suppres-
sion, producing a smoother illumination map. Moreover,
the reduction of outliers in illumination estimation enhances
the balance of I , as evident in the visualized illumination
maps.

4. Qualitative Results for Different Low-Light
Conditions

In our EvLowLight, images with varying low-light levels
are captured. Fig 8 shows the estimated I , R, and final
results. Our RETINEV demonstrates robustness across dif-
ferent low-light conditions, preserving fine-grained details.
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Figure 7. Qualitative results for ablation study. The estimation of
I is better in our results, and leads to a better R with our proposed
IRE module.
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Figure 8. Qualitative results for different low-light conditions. Our
RETINEV shows robustness,

5. Experiments on Synthetic Datasets

5.1. Synthetic Events
To generate synthetic events for the LOL v1 [17], LOL
v2 [19], and SDSD [16] datasets, we utilize the open-source
V2E tool [5] to map grayscale values from images to tempo-
ral mapping events. Normal-light images are first converted
to grayscale and then transformed into videos with increas-
ing brightness to simulate the effect of a mechanical shut-
ter. The brightness increment rate is set in alignment with
the intensity values of the normal-light images. The spatial
dimensions of the generated images are preserved to match
those in the original datasets. We synthesize events with

contrast threshold c set randomly following Gaussian distri-
bution N (µ = 0.2, σ = 0.03) and N (µ = 0.2, σ = 0.05)
during training and testing stages to simulate scenarios en-
countered during testing with different camera settings. For
all other parameters, the default settings in V2E are used.

5.2. More Qualitative Results
More qualitative results are presented in this Section.
Figure 9 and Figure 10 shows results from LIME [3],
URetinex-Net [18], GSAD [4], Retinexformer [2], and our
RETINEV. Please zoom in for a better view. Previous
methods show color distortions (LIME), unnatural artifacts
(URetinex-Net, Retinexformer), and less visibility in dark
areas (GSAD), while Our methods enhance visibility and
contrast in low-light areas, eliminate noise cleanly without
producing artifacts or spots, and ensure robust color preser-
vation.

5.3. More Comparisons
5.3.1. Comparison with Retinexformer and MambaL-

LIE
(1) Retinexformer and MambaLLIE are designed for image
only; they revise the original Retinex model by adding per-
turbation terms or incorporating state space module. They
did not adopt decomposition because when the inputs are
single-modality, and directly improving the illumination of
the image is more effective. (2) But our method processes
dual modalities. Since temporal-mapping events from the
event branch provide high-quality illumination information,
the most direct and effective way is to decompose Re-
flectance from the image branch. The inherent character-
istics of each modality require extracting different types of
information, with the image branch specifically involving a
decomposition process. (3) Experimental proof: Follow-
ing your suggestion, we integrated our T2I module into
Retinexformer and MambaLLIE and retrained them. As
shown in Tab. 6, the “+T2I” variants outperform their base-
lines due to the high-quality illumination provided by our
T2I module. However, they still underperform compared to
RETINEV, as they are not designed to handle two modali-
ties. Image-based illumination may interfere with T2I fea-
tures without proper decomposition.

5.3.2. Equipping Other Methods with Our Temporal-
Mapping Events

We clarify that using temporal-mapping events instead of
motion events for LLIE is a key contribution of our work.
We conducted experiments with synthesized motion events
(from GT images), shown in Tab.6, rows 1 and 2. We also
fed temporal-mapping events into ELIE and EvLight, re-
placing their original motion events. These variants, de-
noted as ELIE (TME) and EvLight (TME) in Tab.6, outper-
form their motion-event counterparts, but still lag behind



Table 6. Extended experimental results on synthetic datasets, read as Tab.3

Method Motion Events Temporal Mapping Events PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM #Params (M)

LOL-v1 LOL-v2-real LOL-v2-syn SDSD-in SDSD-out
ELIE [TMM2023] ✔ ✘ 23.52 0.852 21.39 0.861 23.97 0.933 27.46 0.879 23.29 0.742 204.95

EvLight [CVPR2024] ✔ ✘ 24.61 0.867 23.51 0.875 25.12 0.934 28.52 0.913 26.67 0.836 22.73
ELIE (TME) [TMM2023] ✘ ✔ 26.63 0.863 27.31 0.907 28.38 0.941 31.48 0.952 31.19 0.949 204.95

EvLight (TME) [CVPR2024] ✘ ✔ 26.93 0.870 28.19 0.915 29.98 0.943 31.53 0.953 31.56 0.942 22.73
RetinexFormer (+T2I) [ICCV2023] ✘ ✔ 27.47 0.864 29.69 0.921 31.45 0.942 33.06 0.957 32.68 0.955 27.33
MambaLLIE (+T2I) [NeurIPS2024] ✘ ✔ 27.54 0.866 29.75 0.923 31.61 0.946 32.78 0.948 32.36 0.954 3.38

RETINEV (Ours) ✘ ✔ 28.60 0.877 30.32 0.929 32.06 0.951 33.65 0.960 33.29 0.958 3.44

our method. This is because their models are designed to
align event edges with images, while our RETINEV esti-
mates illumination from temporal-mapping events and uses
them to further enhance the Reflectance component.

6. More Details on EvLowLight Dataset

Beam-splitter Setup. Figure 11 shows our shared-lens
beam-splitter setup from different angles. We use the Nikon
F-mount, with a flange focal distance of 46.5 mm. Then the
light beam is divided into two with equal energy. In this
way, both DVS and image sensor share the same view ro-
bustly. The Nikkor 50mm f/1.8D lens was specially modi-
fied with a leaf shutter to adjust the transmission of the op-
tical system, enabling the generation of temporal-mapping
events. Prophesee EVK4 (1280×720) and MindVision MV-
SUA134GC (1280×1024) serve as DVS and image sensor,
respectively. The entire system is mounted within a rigid
plastic casing, connected at the base to a rotary stage and
secured to an optical platform.
Dataset Collection. We utilize the mechanical shutter to
generate temporal-mapping events for our RETINEV. In
contrast, to produce motion events required by EvLight [9],
we employ a rotary stage to adjust the camera’s yaw. It
is important to emphasize that this setup is exclusively for
EvLight, as RETINEV does not rely on such motion events.
HDR Image Synthesize. In each scene, we capture three
low-light images and three single-exposure low dynamic
range (ldr) images. The ldr images are combined using
the exposure fusion strategy from [10] to generate high dy-
namic range (HDR) images for reference. Examples from
our dataset are illustrated in Figure 12. It is important to
note that these HDR images serve solely as visual refer-
ences and are not considered the “true” ground truth.
Why Normal-Light Image Is Not the “True” Ground-
Truth? The intrinsic differences between event cameras
and RGB cameras result in their distinct dynamic ranges.
Although the HDR images in our dataset are generated us-
ing three ldr images, the dynamic range of the event cam-
era remains higher than that of RGB images. As illustrated
in Figure 12, backlit areas are still excessively dark, while
well-lit regions suffer from overexposure (e.g., the doll’s
face in the fourth example). Consequently, the PSNR and

SSIM values reported in Tab. 3 of the main manuscript are
less reliable compared to those on synthetic datasets and
should be considered for reference only.

7. Experiments on Real-World Datasets
7.1. Downstream Computer Vision Tasks
The goal of LLIE is to improve the visibility for
both human perception and downstream computer vision
tasks. Hence, we qualitatively evaluate two representative
tasks—semantic segmentation and object detection—on the
enhanced results from our method and other approaches.
Figure 13 presents the semantic segmentation results us-
ing the Segment Anything Model [8], while Figure 14 il-
lustrates object detection outcomes using YOLO v3 [12].

For semantic segmentation, as illustrated in Figure 13,
various LLIE methods markedly improve the performance
on initial low-light images. Among them, segmentation
maps derived from our enhanced results exhibit the high-
est accuracy and the most detailed edges.

Regarding object detection, as depicted in Figure 14,
RetinexNet and EvLight generate incorrect predictions
(e.g., misidentifying a bench), while all other methods fail
to detect any objects. In contrast, our method accurately
identifies both the sculpture and the clock.

These qualitative examples underscore how RETINEV
significantly improves the performance of downstream
computer vision tasks.

7.2. More Qualitative Results
Figure 15 shows more results on our dataset. Results from
our method show better visibility in the dark area. More-
over, the dynamic ranges of our result images are also
higher than the dynamic range of other results, e.g., the tex-
tures of the statue are clearly visible in both the illuminated
and shadowed areas (fourth example image), and the letters
on the bag is also clear (fifth example image).

8. Limitations and Future Works
Our RETINEV leverages a transmittance-modulating de-
vice to generate temporal-mapping events. However, for
cameras equipped with digital shutters, such as those in



(a) Input (b) LIME (c) URetinex-Net (d) GSAD (e) Retinexformer (f) Ours (g) Ground Truth

Figure 9. More Visual comparison with state-of-the-art methods on LOL v1 dataset. Results from RETINEV show the best visibility.
Best viewed on a screen and zoomed in.



(a) Input (b) LIME (c) URetinex-Net (d) GSAD (e) Retinexformer (f) Ours (g) Ground Truth

Figure 10. More Visual comparison with state-of-the-art methods on LOL v2 Real dataset. Results from RETINEV show the best
visibility. Best viewed on a screen and zoomed in.
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Figure 11. The 3D model of our shared-lens beam-splitter setup.
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Figure 12. Example images from EvLowLight datasets.

smartphones, producing temporal-mapping events is cur-
rently challenging. We believe this limitation could be ad-
dressed by integrating a charge-clearing module into the
CMOS circuit, which would require adjustments to the
CMOS peripheral circuitry. Additionally, as with all LLIE
methods, color drifting is inevitable to some extent due to
the inherent characteristics of the sensor. Compared to other
approaches, our RETINEV effectively mitigates color drift-
ing, achieving more stable color reproduction.

Additionally, while DVS exhibits exceptional low-light
performance, it has a lower operational limit of approxi-
mately 0.01 lux, as observed in our experiments. Below this
threshold, no events are generated. We are confident that fu-
ture advancements in DVS technology will further enhance
its capabilities.
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Figure 14. Object detection results generated using YOLO v3 [12] with inputs from different methods. Our method achieves the most
accurate detection results.
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Figure 15. Visual comparison with state-of-the-art methods on EvLowLight. Best viewed on a screen and zoomed in.
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