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A. Proofs
A.1. Preliminaries
Definition 1 (Submodular Maximization [36]). Let Ω de-
note a finite set, and let f : 2Ω → R≥0 be a set function,
where 2Ω is the power set of Ω. The function f is called sub-
modular if it satisfies one of the following three equivalent
conditions:
• For every X,Y ⊆ Ω with X ⊆ Y , and for all x ∈ Ω \ Y ,

we have

f(X ∪ {x})− f(X) ≥ f(Y ∪ {x})− f(Y ) , (20)

• For every X,Y ⊆ Ω, we have

f(X) + f(Y ) ≥ f(X ∪ Y ) + f(X ∩ Y ) , (21)

• For every X ⊆ Ω and x1, x2 ∈ Ω \X such that x1 ̸= x2,
we have

f(X∪{x1})+f(X∪{x2}) ≥ f(X∪{x1, x2})+f(X) .
(22)

These three conditions are equivalent, and the first con-
dition is the most commonly used, as it directly reflects the
law of diminishing marginal utility as the number of items
increases.

Definition 2 (Sub-additive). A set function f : 2Ω → R≥0

is sub-additive if for every two sets X,Y ∈ Ω, we have

f(X ∪ Y ) ≤ f(X) + f(Y ) . (23)

Lemma 1. A non-negative submodular set function f :
2Ω → R≥0 is sub-additive.

Proof. As the second condition Eq. (21) in Definition 1. for
X,Y ⊆ Ω, we have f(X)+f(Y ) ≥ f(X∪Y )+f(X∩Y ).
So, f(X) + f(Y ) ≥ f(X ∪ Y ) as f(X ∩ Y ) ≥ 0.

Lemma 2. Let f : 2Ω → R be submodular. Let S ⊆ Ω,
and fS(X) = f(S ∪ X) − f(S) for every X ⊆ Ω. (fS
is the marginal value function for set S.) Then fS is also
submodular.

Proof. Let X,Y ⊆ Ω \ S; it suffices to consider ground set
Ω \ S.

(fS(X ∪ Y ) + fS(X ∩ Y ))− (fS(X)− fS(Y ))

= f(S ∪X ∪ Y )− f(S) + f(S ∪ (X ∩ Y ))− f(S)

− (f(S ∪X)− f(S) + f(S ∪ Y )− f(S)) (24)
= f(S ∪X ∪ Y ) + f(S ∪ (X ∩ Y ))

− f(S ∪X)− f(S ∪ Y )

≤ 0 .



The last inequality is by S ∪X ∪ Y = (S ∪X)∪ (S ∪ Y ),
S ∪ (X ∩ Y ) = (S ∪X) ∩ (S ∪ Y ) and submodularity of
f . Therefore, fS is also submodular is proved.

A.2. Proof of (1− 1/e)-approximation
Submodular maximization is NP-hard in general. There-
fore, most research in this field focuses on approximation
algorithms with polynomial-time complexity. While the
submodular function is monotone, i.e., for every X,Y ⊆ Ω,
we have f(X) ≤ f(Y ). The problem of maximizing
a monotone submodular function subject to a cardinality
constraint admits a (1 − 1/e)-approximation greedy algo-
rithm (as introduced in Sec. 3.2) [42].

In this section, we provide a concise proof of the 1−1/e
approximation ratio for the greedy algorithm.

Theorem 1 ((1 − 1
e )-approximation of Greedy Algo.).

There exists a greedy algorithm for the submodular maxi-
mization problem, which starts with an empty set S = ∅
and iteratively selects the item that maximizes the marginal
gain:

j = argmax
i∈Ω\S

f(S ∪ {i})− f(S) . (25)

The algorithm continues until the selected set S reaches the
cardinality limit k.

This greedy algorithm provides a solution Ŝ, which guar-
antees a (1 − 1/e) approximation, where the optimal solu-
tion is denoted as S∗:

f(Ŝ) ≤ f(S∗) (26)

Proof. According to Lemma 2, fS is submodular, and by
Lemma 1, it is also sub-additive. Therefore, we have:

fS(S
∗) ≤

∑
x∈S∗

fS(x) , (27)

which implies that:

∃x ∈ S∗, fS(x) ≥
1

k
fS(S

∗) . (28)

For this x, we have the following margin lower bound:

f(S ∪ {x})− f(S) ≥ f(S∗)− f(S)

k
. (29)

Let St denote the selected subset after the t-th step of
the greedy algorithm. According to Eq. (25), in the greedy
algorithm, we have:

f(St+1)− f(St) ≥ f(St ∪ {x})− f(St), ∀x ∈ Ω \ St .
(30)

Therefore, in the greedy algorithm, the marginal gain is
lower-bounded by:

f(St+1)− f(St) ≥
f(S∗)− f(St)

k
. (31)

This implies:

f(S∗)− f(St+1) ≤
(
1− 1

k

)
(f(S∗)− f(St)) . (32)

Hence, when the greedy algorithm selects a subset Ŝ = Sk

after k steps, we have:

f(S∗)− f(Sk) ≤
(
1− 1

k

)
(f(S∗)− f(Sk−1))

≤
(
1− 1

k

)2

(f(S∗)− f(Sk−2))

...

≤
(
1− 1

k

)k

(f(S∗)− f(S0)) ,

(33)

where S0 is the initial set at t = 0, with S0 = ∅, such that
f(S0) = 0. Therefore, we obtain:

f(S∗)− f(Ŝ) ≤
(
1− 1

k

)k

f(S∗) . (34)

Hence, we have:

f(Ŝ) ≥

(
1−

(
1− 1

k

)k
)
f(S∗)

≥ lim
k→+∞

(
1−

(
1− 1

k

)k
)
f(S∗)

=

(
1− 1

e

)
f(S∗) .

(35)

The proof is complete.

Previous works [14, 19] have established that the de-
terminantal point process (DPP) is a monotone submod-
ular function. Therefore, when selecting 8 frames us-
ing the standard DPP, the approximation ratio is at least
1−

(
1− 1

8

)8
= 65.6%.

A.3. Proof of Time Complexity
The time complexity of Algorithm 1 is closely O(nk3),
where n represents the number of candidate frames and k
denotes the selection size.

Proof. As indicated by the pseudocode in Algorithm 1,
there are three loops, with the iteration sizes specified as
follows:
• Line 3: ⌈ nm⌉;
• Line 6: k + 1;
• Line 7: kt−1 ≤ min(m, k, k − Ct−1) ≤ min(m, k).



Here, m denotes the segment size. The DPP update in each
iteration (Line 9) has a time complexity of O(mkt−1), uti-
lizing Cholesky decomposition for incremental computa-
tion.

Therefore, the overall time complexity can thus be ex-
pressed as:

O
( n

m
· (k ·mk2t−1)

)
= O

(
n ·min(m2k, k3)

)
(36)

Additionally, the time complexity of computing the deter-
minant in line 5 is O(m3), resulting in the following time
complexity:

O
( n

m
·m3

)
= O

(
nm2

)
(37)

Next, we analyze the relationship between m and k, leading
to the following total time complexity: O(nm

2), if k < m2/3

O(nk3), if m2/3 ≤ k < m
O(nm2k) < O(nk3), if k ≥ m

(38)

In practice, the segment size m is typically small, so in
most practical cases, the time complexity of Algorithm 1
is upper-bounded by O(nk3).

This algorithm exhibits pseudo-polynomial time com-
plexity, analogous to the knapsack problem. In the dynamic
programming approach proposed in this paper, the runtime
of the pseudo-polynomial complexity is practically compa-
rable to that of a polynomial-time algorithm.

In practical applications, the segment size m and selec-
tion size k are both much smaller than the total number of
video frames n, i.e., m ≪ n and k ≪ n. Thus, regard-
less of the relationship between m and k, the total time
complexity is much smaller than feeding all frames into
transformer-based LLMs, which have a time complexity of
O((n · #tokens per image)2) per layer and attention head.

Additionally, the iteration in line 6 of Algorithm 1 is in-
dependent, enabling parallel updates. This results in a time
complexity ofO(nk2), making its efficiency comparable to
that of the standard DPP. Moreover, without lazy strategies
and parallel updates, the time complexity is closelyO(nk4)
in most practical cases, and the proof is similar.

B. Experiments Details and More Discussions

B.1. Experiments Compute Resoureces
We integrate MDP3 as a plug-and-play process during in-
ference with 7B SOTA Video-LLMs. We conduct exper-
iments using LMMs-Eval [21] and VLMEvalKit [11] on
three long video benchmarks. All experiments are run on
NVIDIA A100-PCIE-40GB or NVIDIA A100-PCIE-80GB
GPUs, using 256 AMD EPYC 7H12 64-Core @ 2.600GHz
CPUs, with Ubuntu 20.04.6 as the operating system, adher-
ing to a rigorous experimental protocol to ensure fair com-
parisons among compared methods.

B.2. Dataset Details
Video-MME [13]: Video Multi-Modal Evalua-
tion (Video-MME) is a dataset designed to enhance
video understanding for Multimodal Large Language
Models (MLLMs). It consists of 900 videos spanning 6
visual domains, with durations ranging from 11 seconds
to 1 hour, capturing a variety of contextual dynamics. All
videos are manually annotated by experts, generating 2700
question-answer pairs, ensuring high-quality and reliable
data for model evaluation. Experiments on Video-MME
will be conducted both with and without subtitles to assess
the impact of multi-modal inputs.

MLVU [75]: Multi-task Long Video Understanding
Benchmark (MLVU) is a new dataset designed to evalu-
ate Long Video Understanding (LVU) performance. It ad-
dresses the limitations of existing benchmarks by offer-
ing longer video durations, diverse video genres (such as
movies, surveillance footage, and cartoons), and a range of
evaluation tasks. The benchmark includes 2593 tasks across
9 categories, with an average video duration of 12 minutes,
providing a comprehensive assessment of MLLMs’ capabil-
ities in understanding long videos. This allows for a more
comprehensive assessment of MLLMs’ capabilities in un-
derstanding long videos.

LongVideoBench [61]: It is a recent benchmark designed
to evaluate long-term video-language understanding for
MLLMs. It consists of 3763 web-collected videos of vary-
ing lengths, up to one hour, with subtitles, covering a wide
range of themes. The dataset is tailored to assess models’
ability to process and reason over detailed multimodal in-
formation from long video inputs. It includes 6678 human-
annotated multiple-choice questions across 17 fine-grained
categories, making it one of the most comprehensive bench-
marks for long-form video understanding. In this paper,
we focus on the validation set without subtitles, denoted as
LVBval, which contains 1337 question-answer pairs and has
an average video length of 12 minutes.



B.3. Implementation Details

Visual Encoder: The primary baselines, LLaVA-
OneVision-7B [22] and MiniCPM-V2.6-7B [66], both use
SigLIP [71] as the visual encoder, which we also adopt as
the VLM in Eq. (2) to avoid including excessive additional
parameters. Additionally, since the context length of the
text encoder in SigLIP is 64, potentially insufficient for the
entire question, we split the text sequence into multiple
sequences of equal length, each no longer than 64 tokens.
We then extract multiple text embeddings and aggregate
them into a final text embedding using pooling.

Multi-kernel: Eq. (3) presents a principled approach for
selecting the optimal kernel. Factors exist to combine posi-
tive semi-definite (PSD) kernels. For implementation, we
use the Gaussian kernel as the base PSD kernel, defined
by k(x, y) = exp

(
−∥(x−y)/h∥2

2σ2

)
. Consequently, the base

kernel with a combination factor can be expressed as:

βu · ku(x, y) = βu · exp
(
− ∥x− y∥2

2(huσu)2

)
. (39)

We denote αu = (huσu)
2 as a single hyperparameter. Fol-

lowing the multi-kernel maximum mean discrepancy (MK-
MMD) framework [35], the optimal βu can be optimized
using a quadratic program (QP). However, optimizing βu is
orthogonal of this work. In the recent official implementa-
tion of Long et al. [35], average weights βu = 1/U were
employed, yielding good performance. Hence, we adopt
average weights for βu and concentrate on configuring αu.
Consistent with Long et al. [35], Sun and Li [49], for both
g, k ∈ K, we set αu to 2i where i ∈ {−3,−2, 0, 1, 2} and
use an averaged ensemble of multiple Gaussian kernels. Be-
sides, the difference between g and k is modulated by λ.

Hyper-parameters: We set the trade-off hyperparameter
λ = 0.2 and the segment size m = 32 for all tasks and
benchmarks in MDP3, determined through cross-validation
on a subset of the LLaVA-OneVision-mid [22] training set.

B.4. Hyperparameter Sensitivity Analysis

To evaluate the robustness of MDP3, we perform a sensi-
tivity analysis of the score-trade-off parameter λ and the
segment size m using the VideoMME benchmark (without
subtitles). The results are shown in Figs. 4 and 5.

Score-trade-off (λ). Figure 4 varies λ logarithmically
from 0.0125 to 12.8. Accuracy stays within a narrow range
of 51–53 %, peaking at 53.3 % when λ = 0.2; every value
surpasses the baseline of 49.2 %.
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Figure 4. Hyper-parameter sensitivity with trade-off λ.
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Figure 5. Hyper-parameter sensitivity with segment size m.

Segment size (m). Figure 5 evaluates segment sizes rang-
ing from 8 to 128 frames. All configurations exceed the
baseline. The best accuracy, 53.3 %, is achieved at m = 32;
accuracy stays above 52 % for m ≤ 64 and remains com-
petitive (51.8 %) even at m = 128. These findings indicate
that MDP3 is insensitive to the choice of m.

Across all examined values of λ and m, MDP3 consis-
tently outperforms uniform sampling, confirming its robust-
ness and practical ease of tuning.

B.5. Additional Parameters Analysis
MDP3 is a training-free, model-agnostic method that lever-
ages pretrained VLMs. The primary baselines, VILA-V1.5-
8B [29], MiniCPM-V2.6-7B [66], and LLaVA-OneVision-
7B [22], all integrate the vision encoder from SigLIP [71],
so MDP3 only needs to introduce the additional parameter
from the text encoder in SigLIP. The parameter scales of
them are reported in Tab. 4. The results indicate that the
additional parameters from the text encoder amount to no
more than 6% of the original MLLM scale, which is negli-
gible. More importantly, these parameters are pretrained in
VLMs and do not require tuning with the specific MLLMs.

B.6. Latency Comparison
Our method, MDP3, is training-free, which eliminates any
additional latency during the training phase. Accordingly,
we report the average latency of various processes dur-
ing inference with MiniCPM-V2.6 on Video-MME (with-



MLLM Used LLM Used VLM MLLM Params Additional Params Increase

VILA-V1.5-8B LLama3-8B SigLIP-400M 8.494B 0.450B 5.298%
MiniCPM-V2.6-7B Qwen2-7B SigLIP-400M 8.099B 0.450B 5.556%
LLaVA-OneVision-7B Qwen2-7B SigLIP-400M 8.027B 0.450B 5.606%

Table 4. Parameter scales for VILA-V1.5-8B, MiniCPM-V2.6-7B, and LLaVA-OneVision-7B, along with the increase due to the additional
parameters introduced by MDP3. Here, “MLLM Params” refers to the parameter scale of the baseline, including the LLM, the visual
encoder in the VLMs, and the projector between them. “Additional Params” comes from the text encoder of the pretrained SigLIP,
introduced by MDP3.

0 2 4 6 8 10 12 14 16

MDP3

Baseline

DDP

MDP3-P

12.75 Total: 12.75s

1.94 1.28 Total: 3.22s

1.28 1.28 Total: 2.56s

1.30 1.28 Total: 2.58s

Inference Latency Comparison

Frame Selection
MLLM Inference

Figure 6. Latency during inference with MiniCPM-V2.6 on
Video-MME (without subtitles). Where MDP3-P refers o the
MDP3 with parallel computation in dynamic programming (i.e.
line 9 in Algorithm 1). For direct comparison and better visual-
iztion, we omit the latency of identical processes across all com-
pared models, including image loading and processing in the vi-
sual processor and encoder.

out subtitles), as illustrated in Fig. 6. The baseline refers
to MiniCPM-V2.6 processing all 128 candidate frames
without applying frame selection. Compared to the base-
line, MDP3 selects only 8 essential frames as input to the
MLLMs, achieving a significant speedup during inference.
It reduces MLLM inference time by 11.47s (90% of the
baseline) while requiring only an additional 1.94s (15%
of the baseline) for frame selection. MDP3-P accelerates
frame selection using parallel computation in dynamic pro-
gramming (i.e. line 9 in Algorithm 1), requiring only an ad-
ditional 1.30s for frame selection while reducing MLLM in-
ference time by 11.47s (90% of the baseline). Furthermore,
MDP3-P has a latency comparable to the basic DPP method,
which accounts only for list-wise diversity. This accords to
our theoretical analysis, as both MDP3-P and DPP share the
same time complexity of O(nk2).

B.7. Additional Experiments about Ablation Study
We conduct detailed ablation experiments on three Video-
LLMs (VILA-V1.5, MiniCPM-V2.6, LLaVA-OneVision)
and three benchmarks (Video-MME, MLVU, LVBval),
demonstrating the consistent superiority of MDP3 over al-
ternative strategies.

MDP3 attains peak scores across all configura-
tions: 53.3/58.6/50.8 for VILA-V1.5, 58.0/66.6/57.1 for
MiniCPM-V2.6, and 59.6/69.8/59.0 for LLaVA-OneVision.
The most significant improvements are observed on MLVU,

Video-MME MLVU LVBval

V
IL

A
-V

1.
5

+ uniform 47.5 46.3 47.1
+ SigLIP 50.6 53.9 46.4
+ MDP3 w. MGK 48.9 48.6 53.5
+ DPP w. CMGK 51.8 56.8 47.1
+ MDP3 w. cos. sim. 50.2 54.4 48.8

MDP3 53.3 58.6 50.8

M
in

iC
PM

-V
2.

6 + uniform 52.6 55.4 51.2
+ SigLIP 56.3 60.3 51.4
+ MDP3 w. MGK 52.6 62.0 52.6
+ MDP3 w. cos. sim. 53.1 63.0 54.1
+ DPP w. CMGK 55.2 64.7 52.1

MDP3 58.0 66.6 57.1

L
L

aV
A

-O
V

+ uniform 53.6 59.3 54.2
+ SigLIP 57.0 62.7 51.6
+ MDP3 w. MGK 54.9 63.3 52.7
+ DPP w. CMGK 56.4 68.6 52.8
+ MDP3 w. cos. sim. 55.9 65.2 54.6

MDP3 59.6 69.8 59.0

Table 5. Ablation study of MDP3 across three Video-
LLMs (VILA-8B, MiniCPM-V2.6, LLaVA-OneVision) and
benchmarks (Video-MME, MLVU, LVBval).

with gains of +4.8 to +6.2 over the baselines, underscoring
its effectiveness in complex video understanding tasks.

Baseline uniform sampling underperforms by 3.0 to 9.5
points across all models, highlighting the importance of
frame selection. Furthermore, intermediate variants exhibit
limited gains due to partial adherence to our proposed prin-
ciples; neglecting query relevance, list-wise diversity, or se-
quentiality fundamentally restricts selection quality. More-
over, the ablation results further validate the design choices
of MDP3. For example, although the cosine similarity vari-
ant outperforms uniform sampling by 2.1 to 4.8 points, it
still lags behind MDP3 by the same margin. This difference
underscores the advantage of our multi-kernel similarity in
the reproducing kernel Hilbert space (RKHS), which better
captures high-dimensional feature relationships.
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B.8. More Experiments with Various Selection Size

We have reported the results for various selection sizes k in
Sec. 4.2.2 and Fig. 1. In this section, we provide additional
results and more detailed discussions. In Figs. 7 and 8,
we present the performance of VILA-V1.5 and LLaVA-
OneVision on Video-MME (without subtitles) across var-
ious durations by varying the selection size k. The re-
sults show that, regardless of duration, VILA-V1.5’s per-
formance improves with more input frames when k ≤ 16,
while LLaVA-OneVision’s performance improves with ad-
ditional frames when k ≤ 32. They employ the distinct
context lengths and numbers of frames used during train-
ing. When the number of input frames exceeds the train-
ing stage, the input becomes out-of-distribution (OOD),
leading to a performance drop. Specifically, when VILA-
V1.5 receives more than 16 input frames, it experiences a
catastrophic decline, whereas LLaVA-OneVision maintains
some generalization ability when presented with more than
32 frames. Although some Video-LLMs are trained with
more frames to enhance long-video understanding, this ap-
proach is costly and the number of input frames cannot
be increased indefinitely. Therefore, designing an effective
frame selection algorithm is crucial.

There should be a meaningful discussion about the ques-
tion: “Are more input frames better for video under-

standing?” In Tab. 1, we select 8 frames following the
state-of-the-art frame selection approach, Frame-Voyage,
settings to ensure a fair comparison. However, 8 frames
may not be optimal for all Video-LLMs, benchmarks, and
durations. Our answer to the question “Are more input
frames better for video understanding?” is No! We pro-
vide the following reasons:

1. Training Constraints: Video-LLMs are typically
trained on a limited number of frames. When the num-
ber of input frames exceeds the training configuration,
the model encounters OOD data, leading to degraded
performance. Although training with more frames can
mitigate this issue, it is computationally expensive and
unsustainable in the long run (i.e., the number of input
frames cannot be increased indefinitely.).

2. Inference Constraints: Edge-deployed LLMs have
limited resources, and proprietary models charge based
on token usage. Consequently, processing excessive
frames during inference stage is both resource-intensive
and expensive.

3. Diminishing Returns: The marginal gain from adding
frames diminishes exponentially (as indicated by the
theoretical bound O((1/k)k) in Eq. (35) and sup-
ported by experiments in Figs. 1, 7 and 8), while the
Transformer’s computational cost increases quadrati-
cally (O(n2)). Consequently, adding more frames is not



cost-efficient.
4. Redundancy and Noise: Incorporating additional

frames may introduce redundant or irrelevant informa-
tion, which can dilute salient features and add noise.

5. Latency and Real-Time Constraints: In applications
requiring real-time processing, increasing the number of
frames can lead to higher latency, which may be unac-
ceptable in time-sensitive scenarios (as shown in Fig. 6).

These considerations underscore the importance of devel-
oping an effective frame selection algorithm that balances
performance improvements with computational efficiency
and resource limitations. Instead of merely increasing the
number of input frames, a well-designed selection strategy
can extract the most informative frames, ensuring that the
model focuses on quality over quantity and optimizes both
accuracy and cost.

Additionally, the above discussion is supported across
various durations, encompassing short, medium, and long
video understanding scenarios.

B.9. Qualitative Analysis
We sample six representative cases from Video-MME [13],
illustrated in Figs. 9 to 14, to compare different frame se-
lection methods, including uniform sampling (marked by
in the top right corner of frame) and top-k query-frame
matching with SigLIP [71] (marked by ). The selection
by MDP3 is marked by . Besides, the ground-truth of op-
tion is colored by green.

We categorize the issues observed in the baseline frame
selection process. Especially, the point-wise top-k query-
frame matching with SigLIP, which is the best-performing
baseline frame selection method in Tab. 3, but still falls sig-
nificantly short compared to MDP3. The observed issues
are as follows:
1. Over-matching Specific Text (Fig. 9): As shown in

Fig. 9, when asked, “How many people are wearing ties
in the video?”, the query-frame matching over-focuses
on the keyword “tie”, resulting in the selection of nu-
merous duplicate frames featuring an individual with a
prominent, visible tie. This leads to the omission of
frames where multiple people are wearing ties that are
smaller or less noticeable. In contrast, the selection by
MDP3 demonstrates better balance between query rel-
evance and frames diversity, effectively addressing this
over-matching issue.

2. Failure of Counting Across Frames (Figs. 10 and 11):
As shown in Figs. 10 and 11, when posed with ques-
tions such as, “What is the total number of bird species
visible in the video?” or “How many different kinds of
animal faces appear in this video?”, these counting ques-
tions differ from the example in Fig. 9. Unlike the case
in Fig. 9, the counted items are distributed across dif-
ferent frames and do not appear in a single frame. To

answer accurately, it is necessary to select frames that
include various relevant counted items. However, the
baseline method of uniform sampling fails to identify
specific counted items, while the query-frame matching
approach struggles to avoid duplication, often focusing
repeatedly on frames with the same item. In contrast, the
frame selection by MDP3 demonstrates greater diversity,
allowing for the inclusion of different frames with vari-
ous items, thereby aiding MLLMs in accurately counting
across frames.

3. Failure of Summarization (Fig. 12): In this case,
when the question is a summarization-type query such
as “What is the genre of this video,” the frame selec-
tion requires a comprehensive representation of the en-
tire video rather than focusing on specific event clips.
Since there is no specific key text to match frames, the
query-matching fails, performing even worse than uni-
form sampling. In contrast, the frame selection by MDP3

demonstrates a global understanding of the entire video,
exhibiting good diversity and assisting MLLMs in sum-
marizing the content effectively.

4. Failure of Reverse Question Answering (Fig. 13): This
case is particularly interesting as it focuses on identify-
ing events or items that do NOT appear in the video, such
as “Which of the following elements does not appear in
the video?” This type of reverse QA poses a significant
challenge for query-frame matching since there is no key
text for matching. However, MDP3 demonstrates strong
performance, ensuring diversity in the selected frames
and providing a more comprehensive representation of
the video.

5. Failure of Transition Awareness (Fig. 14): As shown
in Fig. 14, when asked, “How many times does the in-
terviewed girl appear in the video?”, this question repre-
sents a special type of counting task: it not only requires
counting across frames but also identifying the distinct
number of times the interviewed girl appears. While the
concept of the “interviewed girl” is singular, the actual
item to be counted is the “number of appearances”, mak-
ing temporality and sequentiality crucial. As shown in
Fig. 14, the query-frame matching fails to recognize the
transitions between appearances of the interviewed girl.
This oversight leads to missing frames between appear-
ances, resulting in multiple occurrences being merged
into a single one. Consequently, MLLMs cannot accu-
rately count the number of appearances with such a se-
lection. In contrast, MDP3 effectively captures the se-
quential nature of the video and recognizes transitions
between appearances, enabling accurate counting.

Additionally, this case study not only provides a quali-
tative analysis of various frame selection methods, but also
reveals the limitations of baseline frame selection and high-
lights the strengths of MDP3. Besides, it raises several chal-



lenges in VidQA, and serves as a guide for constructing a
more comprehensive benchmark to evaluate the video un-
derstanding capabilities of MLLMs. This study is highly
valuable to the technology community focused on MLLMs.

C. Limitations of MDP3 and Future Directions
MDP3 is a training-free, model-agnostic method that, for
the first time, fully addresses query relevance, list-wise di-
versity, and sequentiality. Theoretically, MDP3 offers a (1−
1/e)-approximate solution to the NP-hard list-wise frame
selection problem, achieving pseudo-polynomial time com-
plexity and demonstrating its efficiency. Empirically, MDP3

outperforms existing methods significantly, confirming its
effectiveness and robustness.

However, MDP3 still has certain limitations that merit
further exploration in future research.
1. Limitation: The use of pretrained VLMs to develop a

training-free, model-agnostic method is a double-edged
sword. While MDP3 can be seamlessly integrated into
existing Video-LLMs, pretrained VLMs often have lim-
itations in understanding complex instructions. Future
Directions: Fortunately, MDP3 is highly adaptable for
future extensions. Fine-tuning the VLMs within MDP3

with more complex instructions could significantly im-
prove frame selection. Specifically, although the se-
lection process is discrete and not directly optimizable,
paired selection data can be gathered, and contrastive
learning methods (such as DPO) can be applied for fine-
tuning. The selection order could be supervised using
existing LLMs, with the list-wise score finetuned to align
with this supervision.

2. Limitation: The selection size k is fixed in MDP3, and
as shown in the case study, MDP3 may occasionally se-
lect some useless frames. This issue can be mitigated
by adjusting the trade-off between relevance and diver-
sity, but such strategies are not feasible to apply on each
sample. Future Directions: Therefore, exploring how
to set an adaptive selection size k is a promising area
for future research. In MDP3, during dynamic program-
ming, the optimal selection for any size i < k has been
captured in the trace matrix TT,i. This provides a conve-
nient framework for determining the optimal k, but the
challenge of identifying the best i < k still remains and
warrants further investigation.



Question: How many people are wearing ties in the video?

A. 4.
B. 5.
C. 3.
D. 2.

Figure 9. : uniform sampling; : top-k query-frame matching with SigLIP; : MDP3. Over-matching of the keyword “tie” leads to
duplicate frames being selected, omitting frames where multiple people wear ties. MDP3 addresses this issue by balancing query relevance
with frame diversity.



Question: What is the total number of bird species that are visible in the video?

A. 2.
B. 3.
C. 1.
D. 0.

Figure 10. : uniform sampling; : top-k query-frame matching with SigLIP; : MDP3. In counting tasks across frames, such as “How
many bird species or animal faces are in the video?”, uniform sampling and query-frame matching struggle with item duplication. MDP3

improves diversity, aiding in accurate counting across frames.



Question: How many different kinds of animal faces are made in this video?

A. 4.
B. 3.
C. 5.
D. 2.

Figure 11. : uniform sampling; : top-k query-frame matching with SigLIP; : MDP3. In counting tasks across frames, such as “How
many different kinds of animal faces are made in this video?”, uniform sampling and query-frame matching struggle with item duplication.
MDP3 improves diversity, aiding in accurate counting across frames.



Question: What is the genre of this video?

A. It is a news report that introduces the history behind Christmas decorations.
B. It is a documentary on the evolution of Christmas holiday recipes.
C. It is a travel vlog exploring Christmas markets around the world.
D. It is a tutorial on DIY Christmas ornament crafting.

Figure 12. : uniform sampling; : top-k query-frame matching with SigLIP; : MDP3. For summarization queries like “What is the
genre of this video?”, query-frame matching fails to represent the entire video. MDP3 shows a global understanding of the video, enhancing
diversity and assisting in summarization.



Question: Which of the following elements does not appear in the video?

A. Iceberg.
B. Moon.
C. Earth.
D. River.

Figure 13. : uniform sampling; : top-k query-frame matching with SigLIP; : MDP3. Reverse QA, such as “Which elements DO
NOT appear in the video?”, presents a challenge due to the lack of a specific key text for matching. MDP3 excels by ensuring diversity in
selected frames and providing a comprehensive video representation.



Question: How many times does the interviewed girl appear in the video?

A. 4.
B. 1.
C. 2.
D. 3.

Figure 14. : uniform sampling; : top-k query-frame matching with SigLIP; : MDP3. For questions like “How many times does the
interviewed girl appear?”, query-frame matching fails to capture the transitions between appearances. MDP3 accurately counts the number
of appearances by considering sequentiality.
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