Mitigating Geometric Degradation in Fast DownSampling via FastAdapter for
Point Cloud Segmentation

Supplementary Material

A. Geometric Information Degradation in Fast
Downsampling

In this section, we visualize and analyze the geometric in-
formation degradation problem present in fast downsam-
pling, with the results shown in Fig. A. We visualized the
results of FPS, RandomSample, and GridSample on Scan-
Net. For FPS and RandomSample, we chose a 32x down-
sampling, while for GridSample, we selected a voxel size of
0.12. This choice ensures that the number of points in Grid-
Sample is roughly aligned with that of RandomSample and
FPS for a fair comparison. First, we can observe that FPS,
due to its strict constraints, maintains relatively complete
geometric information in its downsampling results. On the
other hand, RandomSample has a significant drawback: due
to its randomness, certain local regions may be completely
discarded during the downsampling process, leading to the
destruction of their geometric structures, which greatly af-
fects the model’s semantic judgment. As for GridSample,
its voxel-based downsampling method ensures that no local
region is lost during the process. However, one issue is that
it samples each local region equally, ignoring the impact
of density. Thus, in densely populated areas, more points
should be downsampled to capture additional object infor-
mation, a capability that can be achieved by both FPS and
RandomSample. However, GridSample fails to achieve this
effect, leading to geometric information degradation com-
pared to FPS.

In summary, the two commonly used fast downsampling
methods (RandomSample and GridSample) exhibit varying
degrees of geometric information degradation compared to
FPS. Our FastAdapter is designed to address this issue.

B. Finetuning Costs

Here, we provide a brief overview of the overhead involved
when embedding FastAdapter for fine-tuning. First, regard-
ing the experimental setup, we maintained the same de-
fault settings for the optimizer, learning rate scheduler, and
data augmentation as those used in the baseline with Fas-
tAdapter.

For the training epochs, taking PointMetaBase-L/XL as
an example, we set the fine-tuning epochs to only 15, while
training the baseline from scratch requires 100 epochs. Fur-
thermore, in the Table A, we report the parameter compar-
isons of FastAdapter embedded in different models. As we
can see, the additional parameter we introduced is gener-
ally around 0.3 to 3M, which indicates that the trainable

Table A. Additional Parameters

‘PointNet++ PointMetaBase-XL. PTV3 RandLA

1.0M 15.3M 46M 1.3M
1.3M 18.0M 49M 1.6M

Baseline
+FastAdapter

Table B. Comparison with Other Fine-Tuning Methods

SetUps ‘ mloU(%) mACC(%) OA(%)
Baseline 69.47 75.81 89.87
DAPT 70.31 75.97 90.72
PointGST 70.65 76.49 90.80
FastAdapter 71.22 77.34 90.86

parameters during fine-tuning are approximately 3M. This
demonstrates that the overhead for fine-tuning is quite min-
imal.

C. Comparison with Other Fine-Tuning Meth-
ods

The performance decline resulting from replacing FPS with
random sample can be regarded as a distribution shift prob-
lem. Therefore, some state-of-the-art adapter-based fine-
tuning methods can also be applied to address the issues
associated with random sampling. In this section, we pri-
marily compare FastAdapter with other advanced adapter-
based fine-tuning methods (PointGST [17], DAPT [45]) to
demonstrate the effectiveness of our approach. We used
PointMetaBase-XL and conducted tests on S3DIS Area 5,
with the results shown in Table B. Specifically, DAPT and
PointGST are designed as transformer-based point cloud
methods; however, they can also be applied to most hier-
archical models. We treat the output of each encoder layer
as the input for DAPT and PointGST, which is similar to the
approach taken by FastAdapter.

First, we can observe that these advanced adapter-based
fine-tuning methods effectively improve the performance
decline of the model by adapting to the data distribution re-
sulting from random sampling. Furthermore, DAPT focuses
solely on the features of each input token by modulating
their feature channels to adapt to the new distribution. How-
ever, it lacks attention to local regions, which makes it dif-
ficult to address the issue of losing local regions during ran-
dom downsampling, resulting in limited performance im-
provements on this task. In contrast, PointGST constructs



Original PC FPS RandomSample GridSample

KLY,
*e.«:agf

ot 2

Figure A. Visualization Results of Different Sampling Methods.

local graphs for feature correction, allowing it to achieve
better results than DAPT. Our FastAdapter enhances this
by incorporating large receptive fields for local information
and cross-layer interactions, thereby providing richer local
features than PointGST, which enables it to achieve the best
performance.



