
Moment Quantization for Video Temporal Grounding

Supplementary Material

This supplementary material provides more details of
our Moment-Quantization based Video Temporal Ground-
ing method:
• Details about Training Objectives (Sec. A)
• Datasets and Training Details (Sec. B)
• Additional Experiments (Sec. C)

A. Details about Training Objectives
As mentioned in Sec.3.6, in addition to the moment quan-
tization loss Lmq, we also adopt the moment retrieval loss
Lmr, the highlight detection loss Lhd, and the alignment loss
Lalign as supervision.

To predict the timestamp of the target moments, we uti-
lize L1 loss with focal loss [4] to classify the moment
queries between foreground and background. Given the
ground truth moment m̂ = (m̂c, m̂σ) and binary classi-
fication label ĝc, and corresponding predictions as m =
(mc,mσ) and pc, respectively, where pc is predicted by a
two-layer 1D convolution module. Then the moment re-
trieval loss Lmr is formulated as:

Lmr = λL1 || m̂−m ||+ λclsLcls(ĝc, pc), (1)

where λ∗ are balancing parameters. Lcls is as follow:

Lcls(ĝc, pc) =

{
−α(1− pc)

γ log pc if ĝc = 1

−(1− α)pγc log (1− pc) otherwise,
(2)

where α = 0.9 and γ = 2 are empirical hyperparame-
ters. We use a single L1 loss instead of the combination
of Smooth L1 Loss and GIoU Loss as noted in [3].

Following the previous method [3], we adopt intra-video
contrastive loss as highlight detection loss Lhd. To obtain
the saliency scores ŝi for HD, we calculate the cosine simi-
larities between the pooled textual features q̃ and each token
in the semantic-aware continuous video features zt:

ŝi =
z⊤t q̃

||zt||2 ||q̃||2
. (3)

Then we apply intra-video contrastive learning between
sampled positive frames (with index p ∈ P ) and the pooled
textual query q̃:

Lhd = − log
exp(ŝp/τ)

exp(ŝp/τ) +
∑

i∈Ω exp(ŝi/τ)
. (4)

Here, Ω is the set of frame indices where si < sp, and τ is
a temperature parameter and set as 0.07.

Following [6], we apply a video-level constraint and a
layer-wise constraint as the alignment loss. Because the
lightweight recurrent structure from [6] leverages multi-
layer CLIP features, we adopt InfoNCE loss to calculate
the video-level and layer-wise constraints:

Lvideo =
1

B

∑
b∈B

InfoNCE(z̃bt , q̃
b), (5)

Llayer =
1

Nl

∑
n∈Nl

InfoNCE(z̃nt , q̃
n), (6)

where B denotes the batch size and Nl denotes the num-
ber of layers of CLIP feature. Here, Lvideo performs con-
trast among samples in the same batch and averages the loss
across layers. Llayer performs contrast among layers and av-
erages across the batch. Thus the alignment loss Lalign is:

Lalign = λvideoLvideo + λlayerLlayer. (7)

where λ∗ are balancing parameters.

B. Datasets and Training Details
B.1. Datasets
Moment Retrieval. QVHighlights is a relatively re-
cently publicized dataset by [2]. Consisting of varying
lengths of moments and diverse text queries, it is a challeng-
ing and only dataset for joint moment retrieval and highlight
detection tasks. It contains 10,148 videos and each is 150
seconds long. The training set, validation set and test set in-
clude 7,218, 1,550 and 1,542 video-text pairs, respectively.
Charades-STA is annotated by [1] on Charades datasets us-
ing semi-automatic methods. In total, the video length is
30 seconds on average. There are 12,408 and 3,720 query-
moment pairs in the training and testing sets, respectively.
TACoS is collected by [9] and consists of 127 videos on
cooking activities, which are around 5 minutes on average.
We adopt the same split as [7], which involves 9,790 pairs
for training and 4,436 pairs for testing. Ego4D-NLQ con-
tains 1.3K videos with 8-20 minutes durations under daily
egocentric scenarios. 15.2K queries in the form of questions
are annotated with precise moments.
Highlight Detection. TVSum composes 50 videos of
various genres, e.g., news, documentary, and vlog. Ob-
tained via crowdsourcing, it has 20 saliency score annota-
tions per video. We follow the settings in [5, 8]. YouTube
Highlights is composed of 433 videos from 6 domains:
dog, gymnastics, parkour, skating, skiing, and surfing. We
follow [3] for the settings, as well as the usage of the do-
main name as the text query.



Dataset Epoch Bs Lr Lr drop K Nl λL1 λcls λhd λcmt λvideo λlayer

QVHighlights 60 64 5e−4 20 1024 2 0.2 2.0 0.1 0.25 0.1 0.05
Charades-STA 50 16 2.5e−4 30 1024 4 0.2 1.0 0.01 0.25 0.1 0.1
TACoS 100 8 2.5e−4 50 1024 3 0.2 2.0 0.05 0.25 0.1 0.05
Ego4D-NLQ 60 11 2.5e−4 20 1024 4 0.2 1.0 0.1 0.25 0.1 0.1
YouTube Highlights 200 4 5e−4 − Tab. 2 Tab. 2 − 1.0 0.1 0.25 0.1 0.1
TVSum 500 4 5e−4 − Tab. 3 Tab. 3 − 1.0 0.1 0.25 0.1 0.1

Table 1. Training details. We provide elaborate training details on each dataset. Bs denotes batch size; Lr denotes learning rate; Lr drop
denotes the drop of learning rate at the specific epoch. K denotes the size of the moment codebook. Nl denotes the number of layers of
CLIP features we used.

Domain Dog Gym. Par. Ska. Ski. Sur.
K 512 512 1024 512 512 512
Nl 3 3 3 3 3 2

Table 2. K and Nl for YouTube Highlights.

Domain VT VU GA MS PK PR FM BK BT DS
K 1024 1024 1024 512 256 256 1024 512 512 512
Nl 3 2 3 4 4 2 4 3 4 4

Table 3. K and Nl for TVSum.

Dynamic Projector R1 mAP

@0.5 @0.7 @0.5 @0.75 Avg.
✓ 67.48 50.97 68.33 49.98 47.86

✓ 68.13 51.48 68.81 50.27 47.82
✓ ✓ 67.94 53.03 68.54 51.48 48.81

Table 4. The impact of maintaining a dynamic codebook and in-
corporating a projector.

B.2. Training Details

Elaborate parameter settings for each benchmark are sum-
marized in Tab. 1, Tab. 2 and Tab. 3. For YouTube HL and
TVSum, we achieve the best performance through hyper-
parameter tuning. The same codebook size across different
domains could achieve similar performance to the paper.

After moment quantization, a temporal feature pyra-
mid [6] is constructed by applying 1D convolutions with
on the semantic-aware video features zt. The strides of the
pyramid are set to (1, 2, 4, 8) by default. We concatenate
features from all levels to predict once in all heads. Auto-
matic mixed precision (AMP) with FP16 is utilized to ac-
celerate training. For TVSum and YouTube Highlights, we
adopt random initialization on the codebook since limited
clip-level features cannot generate enough cluster centers.

C. Additional Experiments

C.1. Dynamic and Projected Codebook

As described in Sec.3.6, the moment codebook is initialized
using a CLIP encoder to extract clip-level features on each
dataset. During the training, we optimize a projector to map
the entire codebook to a latent space. Tab. 4 illustrates the
comparison with two alternatives: 1) omitting the projec-
tor; and 2) making each entry in the initialized codebook

Method Params
(M)

Memory
(GB)

R1 mAP

@0.5 @0.7 Avg.
baseline 2.71 9.83 65.35 49.42 45.63

Ours 3.02 9.97 67.94 53.03 48.81

Table 5. The comparison of model size in the training phase.
Params and Memory represent the number of learnable parame-
ters and peak GPU memory (64 batch size), respectively.

Method R1 mAP

@0.5 @0.7 @0.5 @0.75 Avg.
Modulated 67.81 52.39 68.07 50.29 48.02
Continuous 67.94 53.03 68.54 51.48 48.81

Table 6. The impact of maintaining a modulated codebook.

static. Our results show that incorporating the projector sig-
nificantly improves performance.

C.2. Computational Consumption
We compare model size in terms of the number of learnable
parameters and peak GPU memory. As shown in Tab. 5, our
moment quantization method significantly improves perfor-
mance with only a slight increase in model size.

C.3. Modulated Codebook
The results indicate that directly using discrete features is
ineffective. Therefore, we explore another indirect method
in Tab. 6. We follow the modulated quantization operation
proposed in [10], first normalizing the continuous features
and then modulating them with learned scales and biases
computed from the discrete features. This modulated quan-
tization is more effective than directly using discrete fea-
tures but still lags behind our soft quantization.
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