Uncertainty-Aware Gradient Stabilization for Small Object Detection

Supplementary Material

1. Hessian in Norm-based Localization

For the £, loss, we analyze the function’s gradient and Hes-
sian for center coordinate x:
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where w, denotes the anchor width, x is the ground-truth
coordinate, and & the predicted coordinate. Note that nor-
malized coordinates are defined as T, = *_*= and T, =

%, where z, is the anchor’s center. The gradient can be
a

derived as: 5
L .
aTi = 2T, — T, 2)
and the Hessian is derived as:
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Mapping back to the original coordinates, the Hessian in
terms of Z is:
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This reveals K, oc 1/w?, and smaller anchors result in
growth in K, leading to steeper loss landscapes.

For size regression using £, loss on width w, the gradi-
ent with respect to w is:
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The Hessian is derived as:
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Term 2 vanishes as w — w, and the Hessian approximates
H,=2/ w2, matching Eq. 4. This reveals that the loss cur-
vature becomes steep when w is small, potentially causing
instability during optimization.

2. Hessian in IoU-based Localization

Following [1], we consider axis-aligned square boxes with
ground truth center z and predicted center &, the IoU loss is

defined as:
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Figure 1. IoU loss and gradient magnitudes for different object
sizes. Identical center shifts = produce larger gradients (red ar-
rows) and sharper curvature for smaller boxes.

where I = max(0,w — |z — Z|), U = 2w — I, and w is the
box width. The gradient with respect to & derives as:
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The Hessian for overlapping boxes (|x — &| < w) be-
comes:
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For small objects, both gradient and Hessian exhibit in-
verse scaling:
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This confirms that smaller objects exhibit larger gradi-
ents and sharper curvature. Fig. 1 shows that small objects
suffer from disproportionately steep gradients despite equal
positional errors.
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3. Convergence Analysis

Fig. 2 shows mAP progression for UGS versus TPH-
YOLOV5-x [2] on VisDrone. Under both (a) 640x640
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(b) Training and validation size: 1536
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Figure 2. Comparison of training curves on VisDrone under two resolutions: (a) 640x 640 and (b) 1536x1536. UGS consistently outper-
forms TPH-YOLOVS5-x [2] across all epochs, achieving faster convergence and higher final mAP.

and (b) 1536 x1536 resolutions, UGS achieves higher final
mAP with faster convergence. For lower-resolution inputs
(Fig. 2a), UGS surpasses the baseline by ~3% mAP. For
higher resolutions (Fig. 2b), it maintains a ~4% mAP ad-
vantage, demonstrating stability across resolution.
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