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1. Hessian in Norm-based Localization
For the L2 loss, we analyze the function’s gradient and Hes-
sian for center coordinate x:

L2(Tx, T̂x) =

(
x− x̂

wa

)2

, (1)

where wa denotes the anchor width, x is the ground-truth
coordinate, and x̂ the predicted coordinate. Note that nor-
malized coordinates are defined as Tx = x−xa

wa
and T̂x =

x̂−xa

wa
, where xa is the anchor’s center. The gradient can be

derived as:
∂L2

∂T̂x

= 2(Tx − T̂x), (2)

and the Hessian is derived as:

Hx =
∂2L2

∂T̂ 2
x

= 2. (3)

Mapping back to the original coordinates, the Hessian in
terms of x̂ is:

Hx =
∂2L2

∂x̂2
=

2

w2
a

(4)

This reveals Kx ∝ 1/w2
a, and smaller anchors result in

growth in K, leading to steeper loss landscapes.
For size regression using L2 loss on width w, the gradi-

ent with respect to ŵ is:

∂L2

∂ŵ
= 2 · log

(w
ŵ

)
·
(
− 1

ŵ

)
. (5)

The Hessian is derived as:

Hw =
∂2L2

∂ŵ2
= 2 · 1

ŵ2︸ ︷︷ ︸
Term 1

+2 · 1

ŵ2
log

w

ŵ︸ ︷︷ ︸
Term 2

(6)

Term 2 vanishes as ŵ → w, and the Hessian approximates
Hw = 2/ŵ2, matching Eq. 4. This reveals that the loss cur-
vature becomes steep when ŵ is small, potentially causing
instability during optimization.

2. Hessian in IoU-based Localization
Following [1], we consider axis-aligned square boxes with
ground truth center x and predicted center x̂, the IoU loss is
defined as:

LIoU = − ln

(
I

U

)
, (7)
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Figure 1. IoU loss and gradient magnitudes for different object
sizes. Identical center shifts x produce larger gradients (red ar-
rows) and sharper curvature for smaller boxes.

where I = max(0, w− |x− x̂|), U = 2w− I , and w is the
box width. The gradient with respect to x̂ derives as:

∂LIoU

∂x̂
= − 1

U

∂I

∂x̂
+

I

U2

∂U

∂x̂

= −
(

1

U
+

I

U2

)
∂I

∂x̂
(∵ ∂U/∂x̂ = −∂I/∂x̂)

(8)

=

(
1

w + d
+

w − d

(w + d)2

)
sign(x− x̂), d = |x− x̂|.

(9)

The Hessian for overlapping boxes (|x − x̂| < w) be-
comes:

∂2LIoU

∂x̂2
=

4w

(w2 − d2)2
, (10)

For small objects, both gradient and Hessian exhibit in-
verse scaling:

∂LIoU

∂x̂
∝ 1

w
,

∂2LIoU

∂x̂2
∝ 1

w3
. (11)

This confirms that smaller objects exhibit larger gradi-
ents and sharper curvature. Fig. 1 shows that small objects
suffer from disproportionately steep gradients despite equal
positional errors.

3. Convergence Analysis
Fig. 2 shows mAP progression for UGS versus TPH-
YOLOv5-x [2] on VisDrone. Under both (a) 640×640
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(a) Training and validation size: 640
UGS
TPH-YOLOv5-x
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(b) Training and validation size: 1536
UGS
TPH-YOLOv5-x

Figure 2. Comparison of training curves on VisDrone under two resolutions: (a) 640×640 and (b) 1536×1536. UGS consistently outper-
forms TPH-YOLOv5-x [2] across all epochs, achieving faster convergence and higher final mAP.

and (b) 1536×1536 resolutions, UGS achieves higher final
mAP with faster convergence. For lower-resolution inputs
(Fig. 2a), UGS surpasses the baseline by ∼3% mAP. For
higher resolutions (Fig. 2b), it maintains a ∼4% mAP ad-
vantage, demonstrating stability across resolution.
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